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Abstract 

This paper proposes a new method related to efficient instantaneous prediction in order that the 
installed power generation capacity meets the load demand, by analysing the historical power 
demand. The proposed method is based on moving average convergence divergence (MACD) to 
predict the power demand instantaneously from the last and present demand. This approach 
was used for dispatching an optimal PV/WT/Batteries renewable power generation. This 
method was implemented and simulated in Matlab environment and shows promoted 
performances. 
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1. Introduction 
 

The main components of a traditional electricity system are four main sectors: generation, 
distribution, bulk transmission and consumption (Strbac, 2008).These four sectors are linked in 
order to supply demand that varies daily and seasonally. The system has to fulfill the 
uncontrollable demand and also avoid costly interruptions. In addition, the installed generation 
capacity must be able to meet the maximum (peak) demand. Unfortunately, electricity demand 
is very inflexible, especially in the short term. It is also unlikely in the near future to store 
electricity on large scale (Yang & Chen, 2009).  
 

To allocate optimal power generation between different units, an accurate prediction of the 
future available solar and wind energy resources is necessary.  Hence, significant meteorological 
variables decide the attainable energy from renewable resources. A good management of energy 
demand may allow better utilization of resources without waste and without interruption of 
provisions. The output of the different sources of renewable energy varies with weather 
conditions and it is not possible all the time to modulate renewable to follow a desirable demand 
shape. However, load demand is expected to take a more active role in matching the electricity 
production and the demand-side management which is in crucial guaranteeing a stable and 
efficient operation system (Wang, et al., 2015).  
 

The evolution of the electricity generation industry in the last decade has been so rapidly that it 
is now possible integrating the hybrid system to renewable energy sources on the same platform. 
This move towards integration levels higher is motivated by the needs of increasingly efficient 
systems, consequently producing huge electrical energy. However, this has created new 
problems that are related to the optimal management of electricity production from renewable 
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sources. The design process associated with these systems is a relatively complex, since it 
implies the need to consider both the operating strategies and dimensioning of components for 
different system configurations. In addition, constraints and opportunities unique to each 
project must be taken into account. 
 

Autonomous hybrid power systems have experienced extensive use in most sectors. The 
installation of such a system requires the study of its component configuration and 
management. Several authors have been interested to study the modelling, control and 
optimization of hybrid energy systems from design to operation. 
 

In paper Ekren & Ekren (2008) the authors used the response surface methodology (RSM) in 
size optimization of an autonomous PV/wind integrated hybrid energy system with battery 
storage. This method aims to decrease the number of experiments, time, and material resources.  
 

An optimum sizing tool Yang, et al., (2009) for hybrid solar-wind systems employing a battery 
bank, is developed based on the loss of power supply probability. In this study an optimum 
combination of a hybrid solar wind energy system has be achieved to satisfy both the reliable 
and economical requirements. An economic approach based on the concept of the Levelized 
Cost of Energy, is developed to be the best benchmark of cost analysis in this study. In paper 
Abbes, et al., (2011) the authors proposed a new approach for sizing hybrid systems, based on 
system Life Cycle Analysis in terms of Embodied Energy (EE: energy required by all the 
activities associated to a production process expressed on MJ or kWh).  EE and LPSP are used to 
optimize the best configuration of wind turbine rotor area, installed PV generator and batteries 
capacity.  
 
 

Kellogg, et al., (1998) the authors adopted  an iterative method of optimization  based on which 
the accumulative energy generated from wind and solar energy will balance the total demand 
while the variations in the demand profile are offset by other sources, such as a backup diesel 
generator or battery storage.  In Wang, et al., (2015) the authors has modified and upgraded this 
approach and adopted Receding Horizon Optimization (RHO) in which a certain cost function is 
minimized over an effect time-horizon to determine the optimal power references for the 
various energy generation subsystems.  
 
 

A preliminary estimation of electricity consumption for the future can be perfectly generated as 
a coordinated effort between the electricity supplies and users. Usually, the electricity providers 
are interested to know the consumption ahead of time. In Nolde & Morar, (2010) the authors 
proposed to the consumer scheduling his production processes to meet load schedules 
accordingly. As a continuation in this study we propose, in this paper, an HRES configuration 
composed by PV panel, wind turbine and batteries for storage. 
 

This paper is organized as follow: In Section I, the architecture and the modeling of the HRES. 
Section II, we propose a new approach of power prediction, the MACD-indicator based temporal 
power demand prediction algorithm is described. Section III, the simulation (By using Matlab) 
result are reported and section IV is conclusion of the paper. 

2. Architecture and Modeling Hybrid System Energy 
2.1 General Architecture 

This sizing approach is a modification of the method proposed by Wang et al. (2015), based on 
which the accumulative energy generated from the wind turbine system and solar system will  
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Figure 1: General HERS architecture. 

balance the total demand while the variation in the demand profile are compensated by a 

backup battery storage. 

Figure 1 is the general architecture of HERS system used in this research. Three 

different units of the HERS are shown in this figure: PV panel, wind turbine, and 

batteries. The optimal power generation dispatching is given by the following stages:  

Step1. Select available commercial PV panel, wind turbine and battery storage  
Step 2. Use historical power demand data to predict the power demand.  
Step 3. Use the weather forecast to determine the best option.  
Step 4. Balanced power guaranteed by the battery units.  
Step 5. Determine the optimal HRES. 

The algorithm presented in Figure 2 was simulated and implemented in Matlab 
environment. 

 

 

 

 

 

 

 

 

 

Figure 2:  Procedure for optimal dispatching of the power generation. 

2.2 Modeling of the PV Generator 

The performance of photovoltaic modules depends on several parameters, namely, the 
irradiation, the temperature and the load to be supplied. We assume that the PV system is 
controlled by an MPPT command to maximize the output power. Hence, a simple model of PV 
was used to calculate the generated power of the PV system [IX-X]: 
 

    𝑃𝑃𝑉 = 𝐴 × 𝑟 × 𝐼𝑟 × 𝜌     (2.1) 
A(in m2): Solar panel area 
r: Solar panel yield 
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Ir( in W/m2) : Solar radiation 
𝜌:  Performance ratio (between 0.5 and 0.9) 
 
Keep line spacing at 1.  Font type is Georgia. Font size is 11pt. Please do not alter the formatting 
and style layouts which have been set up in this template document. Do not indent the first 
paragraph in each section. Keep line spacing at 1.  Font type is Georgia. Font size is 11pt. Please 
do not alter the formatting and style layouts which have been set up in this template document. 
Do not indent the first paragraph in each section.  
 

2.3 Modeling of Wind Generator 

The wind generator is characterized by its power curve which depends on the speed of 
the available wind. Assuming that the wind turbine operates in maximum power 
operating point MPPT mode, a simple model can simulate the output power as follows 
(Bogdan et al. 1994): 
 

                  𝑷𝒘 =

{
 
 

 
   𝑷𝒓𝒂𝒕 ×

𝒗𝒌−𝒗𝒊𝒏

𝒗𝒓𝒂𝒕−𝒗𝒊𝒏
,                  𝒗𝒊𝒏 ≤  𝒗 ≤ 𝒗𝒓𝒂𝒕

      𝑷𝒓𝒂𝒕                                      𝒗𝒓𝒂𝒕 ≤  𝒗 ≤ 𝒗𝒐𝒖𝒕

𝟎                                        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

     (2.2) 

               
The power output characteristic can be assumed in such a way that it starts generating 
at the cut-in wind speed vin, the power output increases linearly (in some study is not 
linear) as the wind speed increases from vin to the rated wind speed vrat. The rated 
power Prat is reached when the wind speed varies from vrat to the cut-out wind speed vout 
at which the wind electrical conversion system will be shut down for safety. 
The energy curve is specified over the range of 3 to 15m/s annual average wind speed 
and typical graphical display is shown in fig.4.  

 

Figure 3:  Typical graphical wind turbine power curve 

2.4 Storage Characteristics  

In this study, batteries back-up is implemented to meet the load demand during non-availability 
period of renewable energy source. In general battery has 2 or 3 days of autonomy. The 
maximum capacity of the batteries is limited. No over-discharging is allowed in order to extend 
the lifetime of the batteries. Storage is empty at the beginning of the simulation and will be 
charged when the power demanded by the load will be less than that produced by the hybrid 
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system. In the opposite case, the storage will cover the unmet power if sufficient energy is 
available in storage. The battery storage have be sized to operational optimization and load to be 
satisfied  It is considered here that the hybrid system will satisfy a consumption which the 
profile is the actual consumption of a single house. The consumption profile has been measured 
every 2 min for a period between December and March. The variation of the load during a day is 
shown in Figure 9. In this study the hybrid system has to work offline when the entire load is 
satisfied while it must work in parallel mode with the electric network only for fulfill the unmet 
power demand.  

 

Figure 4:  Real-time forecasting of weather data 

Wind and solar irradiation are intermittent; only the weather forecast data can provide such 
information on available energy for demand dispatch. An accurate prediction of the available 
future solar and wind energy resources is primordial to optimally distribute electricity 
generation among the different HERS system’s units.   
Different statistical approaches such as: auto-regression, integrate moving average, neural 
networks etc. can be used to forecast wind speed and solar irradiance. 
In this work, solar and temperature data of historical, current conditions and forecasts are 
obtained from [XVII]. 

3. Power Demand Side Management.  
3.1 Moving Average Convergence/Divergence (MACD) 

Moving Average Convergence/Divergence (MACD) was developed by Gerald Appel in the late 
seventies. MACD oscillator is one of the simplest and most effective momentum indicator. The 
MACD turns two indicators, moving averages, into a momentum oscillator by subtracting the 
longer moving average from the shorter moving average.  MACD of a data set is calculated by 
subtracting two Exponential Moving Average (EMA) corresponding to the, two different 
periods. First EMA is calculated for a short period (p3) and the second one is called EMA for a 
long term period (p2). Figure shows an example of MACD chart. MACD Figure 5 is obtained 
from the plotted data set series in Figure 7.   

 
 

 

 

 

 

 

Figure 5: MACD-Histogram and MACD Indicator 
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3.2 Calculation 

The MACD Line is the subtraction of the 18-min EMA and 24-min EMA. A 18-min EMA of the 
MACD is plotted with the indicator to act as a signal line and identify turns. The MACD 
Histogram represents the difference between MACD and its 12-min EMA. The histogram is 
positive when the MACD Line is above its Signal Line and negative when the MACD Line is 
below its Signal Line Figure 6. 
 

 

Figure 6: Sample of MACD plot 

4. Proposed Algorithm for Power Demand Prediction  

The electricity providers are always interested in knowing in advance the consumption ahead of 
time.  Despite, it is not possible in all cases.  In this paper, we propose an alternative way by 
estimating and predicting the future power demand. This method is based on the behaviour of 
the customer consumption during a short term. To apply this method, we consider the 
consumption for the last 60 min as adequate short period of time.  Also, in this study, we 
consider the residential electricity demand of a single-family house by summing up all the active 
appliances at each time. 
From a measured electricity consumption {𝑑𝑖}𝑖=0:𝑇:(𝑡−1)𝑥𝑇 during a certain interval of time varying 

from zero to (𝑡 − 1)𝑥𝑇 predict the di = (t* T) T minute a head. 
1 

𝑇
:  Frequency of sampling the data. 

The proposed algorithm is: 

1. Choose a data sampled every T of unit time. 

2. Calculate MACD of 𝐷𝑁−1 = {𝑑𝑖}𝑖=0:𝑇:(𝑁−1)𝑥𝑇:   MACD1 

3. Calculate the MACD of 𝐷𝑁 = {𝐷𝑁−1, 𝑆𝑛}  for different value of Sn   :  MACD2  

𝑆𝑛 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 + 𝑛 × ∆𝑑 
4. Compare MACD2 Indicator at time t=nxT to MACD1 indicator at time t=(n-1)xT. 
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The comparaison of the MACDs is based on the following Hypothesis: 
For a short time (duration T), MACD can undergo a slight variation.In other term MACD 
indicator of the data set of the power demand during a period (N-1)xT is constant after T min or 
has a smaller variation as 𝜀 given in Eq.8 . 
 

𝑴𝑨𝑪𝑫𝟏 = {𝒎𝒂𝒄𝒅𝒊}𝒊=𝟏:𝑻:(𝑵−𝟏)𝒙𝑻                                            (4.1) 
 𝑴𝑨𝑪𝑫𝟐 = {𝒎𝒂𝒄𝒅𝒊}𝒊=𝟏:𝑻 ∶ 𝑵𝑻      (4.2) 

‖𝑴𝑨𝑪𝑫𝟏(𝒕 = 𝑵𝑻)−𝑴𝑨𝑪𝑫𝟐(𝒕 = (𝑵− 𝟏)𝑻)‖ ≤ 𝜺      (4.3) 
MACD1 is the MACD indicator obtained from data set of N-1 measurements. The value of power 
at time t = N*T is the future value of power demand. MACD2 is the MACD indicator obtained 
from the data set of N measurements.  
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

Figure 6: Algorithm using power demand profile and MACD to predict power load 
 

In this algorithm we use profile demand of a single house Fig.9.  This profile is divided into L 
states of power. 

The choice of energy demand is restricted only to these L states (𝑆𝑛;  𝑛 = 1: 𝐿). By applying the 
proposed algorithm one state will be retained and will be considered as the value of energy 
demand at time t=N. The value of the indicator at time t=N-1will be used as a reference to 
determine the power demand at time t=N . The MACD of the profile of energy demand during 
the period N-1 will decide to determine the turns in demand and will allow to evaluate the power 
load for the future (next T minutes) . 
Limit and strictness are two important parameters that define the range of power demand.  For 
example if Limit is    1000 and strictness to 0.2. Hence, the power demand range is 0.0364kW 
200kW]. 
Fig. shows the profile of the power consumption, the maximum of power demand is 115.9965 

kW and the minimum is 0.0364 kW.  
𝑆𝑖+1 = 𝑆𝑖 + ∆𝑃                               (4.4) 

∆𝑃  is increment of energy. 
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Add Value S𝑛 to complete 
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Last power demand during 

(N-1) time unit:  DN-1 

Estimated value = S𝑏𝑒𝑠𝑡Future 

power demand at time t=N 

Best similitude(for n=best) 



 

Asia Pacific Institute of Advanced Research (APIAR)                                                    10.25275/apjcectv4i1ict6 

 

P
ag

e2
1

8
 

5. Simulation and Result 

To illustrate the performance of our proposed algorithm we used the residential electricity 
consumption collected for every 2 min from October to march. Figure 8 shows the consumption 
on spring day in a single family house. From the chosen measured consumption of power DN-1 
presented in Figure 9 we need to predict the value of the power consumption after 2 min. the 
value of MACD at time t = 60 min is -0.0642. This can be used as a reference to find the next 
power consumption at time t = 62 min. Using a bench of DN for different value of Sn MACD 
corresponding to different series of DN, the closed value of MACD is -0.0548 and the 
correspondent value of power consumption (Sn) is 1.1083 kW, while the measured value is 
0.9047 kW. 

 

 

Figure 7: Example of used past power to predict the next demand power after 2min. 

Using another different set DN of power demand profile the predicted power demand for the 

next 44 min is presented in the figure 10.   
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Figure 8: Using different DN-1 to predict the power demand 

Figure 9 Shows the predicted values obtained by the proposed algorithm using different DN-1 
for different time of day. As we observe, the predicted values depend on the previous power 
demand (DN-1) for the last 60 min. In each case we predict one value of the power demand at 
the time, and DN-1 is updated by adding the real value at time t=N and extracting the first value 
at time t = 1. DN-1 keep all the time the same length (30 measurements). 
 

To test the performance of this algorithm we consider a bench of 50000 DN-1. Each DN-1 data 
represent the power demand for different period of day (every DN-1 contains 30 measurements). 
This big number of DN-1 data allows to cover different habit of the customer consumption for 
different hour and for different days (24 hours). In this study we use a collected data for five 
months (starting from 23th, October 2012 to 1st, marsh 2013). This algorithm leads to predict 
the consumption at time t=N. The performance of this algorithm is calculated by comparing the 
predicted consumption (dN_Predicted) and the measured (dN_Measured). the performance of 
this algorithm is the  percentage of satisfaction of equation (8). 

dNPredicted  −  dNMeasured  > 𝜀                                                    (5.1) 
ε  is positive value. Usually ε varie from 0 to 3kW 

Table 1: Example of procedure to find the optimal parameters. 

 (p1,p2, p3) 
 

16,12,6 6,16,1
2 

8,18,1
4 

10,20,1
6 

36,22,1
8 

48,28,2
0 

36,24,1
4  

28,16,
8 

48,18,1
2 

 T=120m
in 

69.34  70.20  70.77  70.98 70.88    70.86   70.89   70.91    

Performan
ce 

T=60 
min 

72.38     72.76    73.09    73.38      73.60    73.65   73.75     73.86     

 T=2 min 82.91 83.06    83.23     83.35 84.05 83.26 83.95 84.56 
 
Also We us big number of combination of parameters we found for a N=60 min the best triple of 
(p1,p2, p3) is (24, 18, 6). 

Table 2: Performance of the proposed algorithm using the optimal parameters. 

MACD, p1=24, p2=18, p3=6,   (N-1)=60 min 
Time  of 
prediction in 
min 

500 240 120 60 50 40 30 20 10 4 2 

Performance 67.14  71.25 70.97 75.25 74.97 75.16 75.91 77.49 0.78 85.83 86.37 
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Figure 9: Performance of the proposed algorithm. 

The performance of the prediction (Table 2) decreases in time ahead. As long as the time of 

prediction is longer as the performance decrease. The performance to predict the power 2 min 

ahead is maximum 86.37 %. 

6. Analysis of Result 

The optimal power production in response to the predicted power demand is given by the black 

dashed profile Fig.11. This optimal power fulfils most of the time the power demand. Eighty 

percent of time the power generation satisfies the demand power.  

 

Figure 10: Optimal power production on response to predicted power demand. 

This algorithm can be very interesting for houses which does not require a continuous quality 
electric power. It’s approximately 13% of chance that the power demand prediction can cause of 
time.  
Wind (1) characteristic: Rated output Power: 6kW, Cut-in speed = 5 m/s, Rated out 
speed=10m/s, Cut-out speed=20m/s. 
Power generation depend on the predicted power and the weather forecast. Hence, is same cases 
the power generated by the HERS does not fulfil the power demand for example there is a lack 
of production at 6am, 12pm, 8 pm and 12 am (figure 11). 
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Figure 11 is a typical dispatching power generation on respond to the predicted power demand 
obtained by the proposed algorithm. This power generation is obtained regardless the coast. 
This power dispatching considers only the available power and combines then in the way fulfils 
the power demand. 

 
Figure 11: Optimal generation profile for a typical day considering predicted demand and on 

line-forecasting. 

The study shows that it is impossible to completely satisfy a load with a hybrid system without 
adding an adequate storage device. The optimal dispatching power obtained in Figure 11 is 
according to the operating optimization depends strongly on the site of the energy potential 
installation and specifically the temporal and energy distribution of resources.  Despite the fact 
that the habit of the human consumer can be never predicted perfectly, the methods adopted in 
this article can be improved in several ways: improving strategies to control sources of energy, 
adding more storage devices, taking into account other criteria including economic etc. 

 Conclusion 

In this paper a power demand of every 2 min was used as a reference to predict the power 
demand 2 min a head. An MACD approach has been proposed to predict the power load of one 
single house. The result show that the proposed predicting algorithm is able to predict (in 86 % 
of time) instantaneously (2 min ahead) power load according to the past (1 hour before) and 
present load. Based on the actual power consumption, the prediction approach was developed 
using MACD and the hypothesis ‘For a short time, MACD can undergo a slight variation’.  
 

We found that the MACD indicator is very useful to help electricity producer and to identify 
various information, especially with the possibility to notice consumption changes very early. 
For the optimal EMA a short period 18 min and long term period of 24 min, the performance of 
the proposed algorithm show a very good performance to predict power consumption in short 
term as 2 min and in a long term as 500 min. This kind of prediction can be useful for real time 
management of power demand production. Therefore, it is an important indicator, it is 
necessary to refine the strategy or approach used, with additional means for determining the 
variation in power consummation in long term and avoiding lack of production. 
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