

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

3

P
ag

e1
8

3

EMPIRICAL STUDY ON AUTOMATED GUI TESTING

TECHNIQUES FOR ANDROID

Madiha Yousaf a, Muhammad Haris b

ab COMSATS Institute of Information Technology, Islamabad, Pakistan
Corresponding email: m.haris@comsats.edu.pk

Abstract

Smart phones with high-resolution touch screens have become a vital part of everyone’s life.
Android technology in smart phones provides advantage of being open source and user
friendly. Android works with hundred of devices where users can test and modify their
phone as they need. The important aspect of a mobile phone is not only how it meets the user
requirement, but the most important is the correctness and accuracy of its response and
interaction with graphical user interface. The traditional GUI testing of today’s smart phones
is not enough to test the Android application. Android application is actually event-driven;
so it is necessary to assess how techniques can be adopted to carry out cost-effective testing
processes in the Android platform. There are special automated techniques for GUI testing of
android applications proposed by software engineers. This paper presents an overview of
recent work done in the area of automated GUI based testing of Android applications.

Keywords: Android, GUI Testing & Automated Testing Techniques.

1. Introduction

The worldwide market of Smartphone shows that Android is the most popular platform.
According to International Data Corporation in the second quarter of 2016 number of
smartphones shipped account to 343.3 million in which market share of Android OS
accounted for 87.6% (IDC.Com, 2016). Android devices like
e-readers and tablets are also going popular rapidly. Android devices are becoming part of
everyday life for different types of use such as information sharing, casual gaming, online
transactions, audio and video playback and other monetary transactions. The growth of the
Android Market exceeds 1 billion app downloads per month (Chu, 2011). The increase in this
trend is basically due to the user friendly, appealing, colourful graphical user interface
provided by these mobiles apps. Thus it is very important to make sure that the graphical
user interface is reliable and the applications are running on it smoothly.
The question that now arises is how to ensure graphical user interface reliability of android
mobiles!

Manual testing let the user perform random testing but it is error prone and time
consuming. Manual testing is resource consuming including a lot of human effort, time,
trained teams, and proper expert team-lead to get best results along with sound knowledge
of development and users experience.

There are many manual testing techniques but the issue arises due to the non-deterministic
nature of the android as it becomes impossible to test manually for every possible event as it
will be quite lengthy and time consuming. It is not really possible for a human to test all
possible inputs criteria and to retest all of them again after the bug has been fixed. So, there
is a requirement for automated testing for graphical user interface to ensure the reliability
and correct behaviour of the GUI’s, as graphical user interface have become an important
factor for success or failure of the android phone.

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

4

P
ag

e1
8

4

The Graphical User Interface (GUI) of the Android app is an essential component for
automated testing techniques. GUI is the screen viewable to the user and it provides all or
many use cases of the application to the user. Most of the mobile applications nowadays are
GUI driven or GUI centric. They are not designed to be exercised without GUI. Considering
the GUI alone i.e. without analysing applications implementation is sufficient to extract the
use cases. As the GUI of mobile apps is complex in functionality, manual testing requires
intensive resources. Hence automated GUI testing techniques are required for the better
quality of Android Apps (Yumei & Liu, 2012).

Automatic testing of GUI needs to mimic human interaction with the GUI. It is done by
using widgets and verifying the GUI. GUI can be verified by using an application
programming interface, optical character recognition or bitmap comparison. There are
different tools for testing GUI present in the android software development kit for example
monkey testing tool, Hierarchy viewer etc, but they have some limitation for system level
testing.

This paper presents us with the review on automated GUI testing techniques of Android
Applications. Section 2 provides us with the different kinds of automated testing techniques
available for GUI testing as well as a little classification showing different types of techniques
used for different purposes. Section 3 of this paper provides us with the discussion and a
tabular view of different techniques and in which scenarios they can be used. Section 4
provides us with the conclusion and future work.

2. Automated testing techniques for GUI testing in Android

Many testing techniques have been implemented and presented for automating the GUI
testing for android. Although techniques like android verification, GUITAR, GUI testing and
android bug studies are already there, these are still lagging behind as these studies are
looking for where the bug is present not looking for semantics and their fixation. So here we
have studied many different approaches and techniques for automated GUI testing for
android which will be discussed here as well as we have also studied the effectiveness of the
evaluation of the testing. Before explaining these techniques let us provide here a
classification of different techniques based on their types. We have differentiated various
techniques on the basis that either they are taking test cases or are based on some tools or
models. The table below gives us an overview of the technique and its type.

Table 1: Testing Techniques

Technique Name Technique Type

Bug study and bug detection Test case and event generation

Android Instrumentation framework Test case and event generation

Positron Framework Client server based model

Testing based on Image flow Images are taken as input

Silkuli Tool Based

TEMA Tools Model based

Model based GUI testing for web based

android applications

Model based

Android Ripper Tool based

Grey-box Approach Model based

GUI Tool Set Model based

ART test case generation technique Tool based technique

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

5

P
ag

e1
8

5

GUI crawling based technique Model based technique for android application

Accessibility-based approach Tool based approach

3. Bug study and bug detection

A technique already presented for testing GUI for android phones becomes a new idea as in
this study first the bug collection and categorization has been carried out based on ten
popular android applications. After the bug study has been conducted the bugs are then
categorized into various categories out of which the GUI bugs are considered for further bug
detection using test case and event generation. GUI bugs are identified as activity, event and
type error bugs. The dynamic approach presented consists of the many techniques. The first
step includes the automated test case generation which is done by using JUnit. Once the test
cases are there then the events are generated as for GUI detection events plays a very
important role, thus for this purpose monkey event generator has been used. After this the
test cases are run on the Dalvik virtual machine and the traces are generated which are then
saved in the log files. Then comes the log file analysis which determines the bugs based on
the specified patterns. The biggest advantage of this approach is that in addition to the old
bugs, new bugs are also identified in the less time (Hu & Neamtiu, 2011).

4. Android Instrumentation Framework

The Android Instrumentation Framework is an incorporated fragment of the android
software development kit. Instrumentation tells us about the competence of monitoring and
diagnosing an application by giving as input the debugging techniques, tracking code and
performance counters which helps us in measuring the performance and in controlling the
application’s behaviour. It makes use of the JUnit assertions to validate the GUI behaviour
and state. No new verification models are introduced, making it simpler to be used for expert
JUnit tester.

4.1 Positron Framework

Coming to the positron framework it is a client-server model made above the Android
Instrumentation Framework to pay attention to the activity's sources, giving Selenium an
improved approach for writing and running test cases. Apiece test case is served as client,
which associates with the server that runs that particular activity. In addition it also
facilitates us with the communication infrastructure and server services, which allows us to
carry out the tests self-reliantly of one another. The major contribution of this approach is
that they have provided us with the detailed comparison of different approaches and made it
quite easier to know at which stage we have to use which framework for testing. The two
explored frameworks make available basic GUI testing functionality on various levels.
Compared to GUI desktop testing tools both frameworks still show notable limitations
(Kropp & Morales, n.d.).
The Table 2 sums up the comparison of the two approaches.

Table 2: Comparison of instrumentation and positron framework

Android Instrumentation

Framework
Positron Framework

Low-level API to simulate user

interactions with the screen

Abstracted comfortable high-level interface for writing

GUI tests

Direct handle to the context used to poke

freely around the activity to validate test

assertions

Connects to the application under test each time when the

test class needs to use activity resources which slows down

test runtime execution.

Every UI element must be brought Locate activity resources by calling getters for each named

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

6

P
ag

e1
8

6

individually in the setup method property class

Offers greatest flexibility and direct

access to the GUI controls

Reduces the effort, for both, writing and maintaining test

code significantly

5. Image based testing

Another approach on which work has been done previously includes the concept of
automating GUI testing for Android applications based on the image flow. The above
explained concepts are related with the test cases and client server models, here we are using
the concept of images. In this approach the images on the mobile are encoded to be
transferred to the server and then data in the byte pattern is changed to the pixels and then
the storage in the XML files have finished. Developer detects the created Image Flow and
then differentiates the existence and nonexistence of errors. XML is being used for the Image
Flow made previously in the following testing. As the second testing is being carried out by
relating XML for Image Flow prepared by this time and novel XML, extra and eradicated
parts and errors of images are eminent. Thus this approach can be used for further GUI
testing in mobiles and for integrating it in different environments and machines (Kwon &
Hwang, 2008).

5.1 Evaluation of automated testing

In addition to the above explained automated testing techniques for android GUI’s another
approach is there which makes us familiar with the effectiveness of making the testing for
GUIs automated. Effectiveness is found by keeping different requirements in the mind which
includes capable to run tests on two phones in place of one, carry tests on dissimilar products
of the similar product acceptable to measure the reusability of test models, comprise test
data in test run in an simple and easy way and attempt to originate test model commencing
design models. Results show that more than half of the bugs were revealed in modelling and
the remaining third by test execution (Jääskeläinen, et al., 2009).

6.Sikuli

Sikuli is an open source automated GUI testing technique. It gives us an environment to
write and execute a script using Jython code, utilizing screenshot pictures (.png) as a
function inputs. Jython uses the Python programming language and allows it to execute on
the Java platform. Sikuli IDE gives an interface, to create, execute scripts in step-by step
manner. Two main functions performed by sikuli script are the keyboard or mouse actions
performed by Java Robot class, and to find images with C++ pattern matching algorithms
using OpenCV.

Sikuli in comparison with other GUI testing technique e.g AutoIt, Whyline, CoScripter,
Guitar, Robotism, NativeDrive, doesn’t need to know the source code, name and stored
position of the application and the system calls it invokes. The EBL (embedded
benchmarking lab) project successfully introduces a refined way of android GUI testing
using Sikuli technique by eliminating two of its basic limitations of inability to record the test
cases performed by user, and lack of output result analysis.

Sikuli is a powerful tool, it uses simple syntax of Python. Sikuli uses the full cross-platform
functionality of Java. It also adds its own libraries. It is easy to use on any
platform/operating systems. Sikuli script allows black box testing. We don’t need to know
anything about the program but its appearance and visual behaviour. Being an open-source
tool, it has a great chance to develop rapidly. Sikuli library gives a great foundation for future
development. Making new testing tools, as well as improving the existing ones, has a great
potential for researchers and developers. The disadvantage of Sikuli is that most error
occurrences are due to failure of image recognition. The current stage of image recognition
technology is still not efficient to be used for wide usage. In an android testing it was found

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

7

P
ag

e1
8

7

that the number of error occurrence reached up to 50%. Out of which 4/5 were due to image
mismatch. Even though the rate is higher than for Windows system, it is still quite good
considering that there aren’t many testing tools for Android, while the existing ones have
very limited capabilities (Volodymyr & Ying-Dar, n.d.).

7. TEMA Tools

TEMA web GUI is used as an interface for testers having a test server, which is used for
managing and designing test patterns, more over executing and following the actual tests,
and test model packages are managed. This all simmers down letting testers immediately
make the choice of what physical device they want to execute their tests on and what they
would like to test.

TEMA tool is used for model based testing of GUI. It has four phases of model based test i.e.
modelling, design, generation and debugging. The phase for test modelling have tool for
designing and utilities of model. Second phase of design contains a web GUI and it designs
the objective of tests. The test creation phase deals with a number of techniques and
algorithms that uses model to generate desired tests. The debugging phase interprets
unsuccessful test runs. The models designed in TEMA are represented by state machines,
showing transitions between different states.

Figure 2: Architecture of TEMA TOOL

Action words describe the action/interaction of user with the GUI at a high level of
generalization, for example sending an SMS, making call etc. Action words are then
converted into a series of keywords for menu direction-finding, text input etc. Keywords are
used in low level models. TEMA uses action words and keywords in models at diverse levels
of abstraction. Action machines that contain action words are formed with modification
machines having key words. The resultant composite model is taken as an input to the tools
executing the model. This has been implemented by making use of an on the fly algorithm to
avoid state space explosion. TEMA approach is also suited to the domains other than
mobiles. TEMA has been tested on BBC News Widget; an android application. 14 bugs were
found in the application, 6 during test execution phase and 8 during modelling process. The
model precisely found even small discrepancies, which might have been neglected by manual
testers.

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

8

P
ag

e1
8

8

Model library of TEMA contains models for over 100 action machines containing almost
1000 action words. Action machines can be used again for different domains. TEMA testing
covers more bugs at modelling level that at execution level. It gives reduced amount of test
maintenance (Katara, 2011).

8. Model based GUI testing for web based android applications

A German company Heidelberg Mobile International has been working in mobile industry

for over more than 12 years. The company has developed an online information system for

pedestrians. It’s a mobile location based, user-friendly, cross platform web based

information system application. UI testing of this application has been done manually by

quality assurance team.

The research question of the paper is that does really the automated model based GUI
testing give efficient results and what will be the behaviour of application under test i.e.
CeBIT2go mobile web application. Model based testing test a system in abstraction level. It
uses model based design particular for an application to perform testing. Model is an
abstract of the software under testing SUT. The most important factor for android automated
testing is to properly understand the system under test, therefore model based testing is best
suited for GUI testing of android applications as it works on a separate model designed for
each application/system.

CeBIT2go is a mobile web application in which with the mobile ticketing enabled the user
enters into an exhibition, the application tracks user location, and also the mobile payment is
activated when user purchases something from exhibitor. The interface enables multi-touch
by providing some buttons, image icons, list and a map that could freely be moved around
with figure. Selenium is used for providing automatic web based administration tasks. The
application under test was examined under three main tests i.e. verify the elements of page
such as button icons after page loading, page transversal, and functionality testing for
specific functions. For the functionality testing 17 test cases were made to test application on
Samsung galaxy Tab manually and automated. Results showed that automated testing spent
more time to the test cases which deals with page loading, UI element location or element
assertions. In manual testing once the page has been loaded testers can only scan through
the application page. Automated testing takes much less time as compared to the manual
testing for test cases involving web browsers or zoom in and out functions. Therefore
automated testing gives better results with web dependent mobile applications as the web
interface and GUI for android application have similar structures. In automated testing, test
cases take the least amount of time to execute, thus making implementation easy. It also
provides benefits of reusability and maintainability (Methong, 2012).

Android RipperAndroidRipper [11] is an automated technique implemented in a tool that
tests Android apps via their Graphical User Interface (GUI). It uses ripping for the purpose
of automatically and systematically traversing the app’s user interface. And then generate
and execute test cases as new events occur. The aim of the AndroidRipper is to obtain the
sequence of events that are generated through GUI widgets. This has been done by analyzing
the application’s GUI dynamically. Each generated sequence provides an executable test
case. During the ripping process, AndroidRipper generates a GUI Tree model by maintaining
a state machine model of the GUI. This GUI tree model consists of GUI states and state
transitions occurred during the process. The iterative process of GUI Ripping is as follows:

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
8

9

P
ag

e1
8

9

Task List Initialization;
while (Task List Is Not Empty) {
 Extract a Task From The Task List;
 Execute the Task;
 Abstract the Current GUI Abstract State;
 Update the GUI Tree Model;
 if (GUI Exploration Criterion) then {

Define New Tasks;
Add New Tasks To The Task List; } }

This technique provides good level of code coverage i.e. around 37% to 39% and real bugs
and crashes detection. Its testing is compatible with smoke testing process and is more
effective with respect to standard random testing tools such as Monkey.

9.Grey-box Approach

Another approach for automated testing of Android app is the Grey-box approach of GUI
model generation [12]. It uses the static analysis to extract the set of events carried by the
GUI of application and by the of technique dynamic crawling to generate the model of
application by methodically executing the extorted events on the running application. In
Android framework, user actions are defined by recording a suitable event-listener for it or
by taking over event handling technique of an Android framework component. Identification
of both type of actions are performed by identifying place where act is initiated or registered,
finding the component on which the action execution has been done and the identifier being
extracted. The output of this static analysis is action map which contains the IDs of
components on which the action are executed. The GUI model is developed as finite state
machine of the behaviour of Android app. The crawling algorithm discovers all the app’s
states by firing open actions on every pragmatic state. The crawling process comes to an end
if there are no open states in the model which means there is no state which have open
actions to be executed. The output of the algorithm is a crawled model of the app. It takes
70% less time to traverse the code then DFS and increase the coverage by 34% on average.
This technique provides the reusable quality model for Android app testing but it requires a
one time manual effort to select the attributes of executable components to compose the
visual observable state of the GUI.

10.GUI Tool Set

The authors of AndroidRipper improved their technique and presented a GUI toolset for
testing Android applications [13]. They worked on extending the automation level of
previous technique and developed a tool set in which the manual intervention of the tester is
quiet reduced. A modular GUI ripper is designed for that purpose, consists of nine
components, giving GUI tress and crash report as final output. An automated test method is
developed to use GUI Ripper in testing Android apps with the help of tool set. The first step
is deploying, in which a testing program is obtained that is executable on Android Virtual
Device (AVD). A set of tools are employed in this step that includes Source Code
Instrumentation tool, ripper options configuration tool and deployed tool. Second step is
ripping, which executes the testing program on AVD from the initial state and provide source
code coverage and crash reports. Ripper Executor Tool performs this automatically. The last
step is post-processing, this provides report of code coverage, GUI Model and JUnit test
suite. The tools involved in this step are code coverage generator, GUI Model translator and
JUnit test Suite Generator. This technique gives 53 to 69% of code coverage and detected
new bugs as well.

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
9

0

P
ag

e1
9

0

11. ART test case generation technique

The researchers proposed a model using black box testing for mobile application and further
presented an automatic test case generation technique by prolonged the adaptive random
testing. For generating test cases automatically, distance metric and a test case generation
technique that is named ART is introduced to that. ART algorithm is an algorithm adopted
from the Chen et al. algorithm (FSCS-ART) and basically depends on distance of test cases
and information of input. They applied adaptive random testing to model the inputs of
mobile application and generating the test cases. They have mainly concerned with the
mobile application inputs either GUI event or context event. ART algorithm for generation of
test cases is implemented by smart-monkey tool in Mobile Test. ART technique for test case
generation and event sequence distance both are not only appropriate for mobile
applications testing, but also appropriate for the embedded event-driven software. It reduced
the number of test cases (Domenico, et al, 2012).

12. GUI crawling based technique

An automatic testing technique is proposed that based on graphical user interface (GUI)
crawler. In user interface the GUI crawler based technique pretends events of real user and
automatically assumes a GUI model. The GUI model is executed automatically and generates
test cases that may be used in regression and crash testing. A GUI tree is generated by GUI
model that starts deriving test cases for crash testing as well as regression testing. The GUI
tree nodes represent the user interfaces and edges represent the transition between events of
Android application. Android Automatic Testing Tool (A2T2) is also introduced that
supports their proposed technique. Three main components of A2T2 are GUI crawler,
instrumentation component of java code and Test Case Maker. The A2T2 prototype
accomplishes Widgets subsets of an Android application. The advantage of the above
technique is that it detects runtime crashes faults and also shows effectiveness in
automatically detecting the faults. But in real applications the implementation of crawler
based technique is required by experiments that show the technique scalability. (Amalfitano,
et al., 2011).

13. Accessibility-based approach

An approach is proposed for testing tools of GUI that used a visualization mechanism and for
retrieving and monitoring GAPs used accessibility technologies. Accessibility technologies
are used because they provide objects of GUI and generate the events and also set the values.
The basic aim of this approach is that, just like human-driven procedure, it makes it easier to
create testing tools of GUI for engineers. Users read or enter data into GUI objects when an
initial screen appears. By causing some actions the users initiate transitions. Microsoft
Active Accessibility (MSAA) is accessibility technology that is used in their approach for
windows. By Accessibility technologies SMART (System for Application Reference Testing)
and REST (Reducing Effort in Script-based Testing) tools are created for GUI testing. Smart
specified that how user use GAPs reference and how they used it for other input data. REST
is used for testing Gaps modification in test scripts (Grechanik, et al., n.d.).

14. Discussion

Different successful techniques for automated GUI testing of android application are
reviewed. Concluding our findings we can say that manual testing has been left far behind
and the automated testing for GUI’s have made it quite popular due to its distinct features as
well as due to the various techniques available for different kind of data present in our GUI.
Important aspects of some techniques are summed up in the Table 3. This summarized table
will help the android testers to get information about the latest different automated GUI
testing techniques, their effectiveness and performance.

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
9

1

P
ag

e1
9

1

Table 3: Different Automated GUI testing techniques for Android

Technique
name

Technique
Type

Novel Idea/
Modification

Tested on
Performance
Results

Bug study and
bug detection

Test case
and event
generation

Novel idea

Android
framework using
JUint and
Monkey event
generator

Effective as after
automating new bugs
are detected in
addition to old one

Android
Instrumentati
on framework

Test case
and event
generation

Novel idea

Android
framework using
JUnit assertion
functionality

Effective in low level
API and provides
greatest flexibility and
direct GUI controls

Positron
Framework

Client server
based model

Modification of
android
instrumentatio
n framework
and uses
selenium like
commands

Android
instrumentation
framework

Effective in abstracted
high level interface and
reduces the effort for
both writing and
maintaining.

Testing based
on Image flow

Images are
taken as
input

New idea

Mobile
framework by
making tool
having image
flow server and
encoder

As by comparing the
new image with the
already stored ones
errors can be found out
successfully.

Silkuli Tool Based

New research
project, of User
Interface
Design Group,
MIT Computer
Science and
(CSAIL),
National
Science
Foundation.

EBL (embedded
benchmarking
lab) project

Sikuli is a powerful tool
it uses simple syntax of
Python. Sikuli uses the
full cross-platform
functionality of Java.
Sikuli in comparison
with other tool based
GUI testing technique
doesn’t need to know
the source code, name
and stored position of
the application and the
system calls it invokes.

TEMA Tools Model based Novel idea
BBC News
Widget

TEMA testing covers
more bugs at modeling
level that at execution
level. It gives reduced
amount of test
maintenance.
The model correctly
found even minute

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
9

2

P
ag

e1
9

2

discrepancies, which
might have been
neglected by manual
testers.

Model based
GUI testing
for web based
android
applications

Model based Novel idea
CeBIT2go mobile
web application

Model based
automated testing
gives better results
with web dependent
mobile applications as
the web interface and
GUI for android
application have
similar structures. In
automated testing test
cases take least time to
execute thus making
implementation easy.
It also provides
benefits of reusability
and maintainability.

AndroidRippe
r

Tool based
Extended GUI
Ripping [7]

Android App
“Wordpress”

Better coverage of LOC
i.e. around 37 to 39%
within almost same
time duration as in
Monkey testing.

Grey-box
Approach

Model based Novel idea

Android Apps
TippyTipper,
OpenManager,
Notepad,
TomDroid,
AardDict,
HelloAUT,
ContactManager,
ToDoManager

Take 70% less time to
traverse the code then
DFS, increase the
coverage by 34% on
average

GUI Tool Set Model based
Improved
version of
AndroidRipper

Android Apps
AardDict,
TomDroid

Increased coverage of
LOC i.e. around 53 to
69% , new bugs found.

ART test case
generation
technique

Tool based
technique

Adaptive
Random
Testing

Implemented as
a tool named
smart-monkey
within
MobileTest

ART use smaller
amount of time than
random to depict the
first fault across all
application and
reduced test cases

GUI crawling
based
technique

Model based
technique
for android
application

New technique
by adapting
existing GUI
techniques

Through a tool
A2T2 tested a
small size
Android
application.

Usability for running
crash testing and
failure testing,
efficiency in identifying
some types of errors in
a completely automatic

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
9

3

P
ag

e1
9

3

manner.

Accessibility-
based
approach

Tool based
approach

Novel idea

System for
Application
Reference
Testing (Smart)
& Reducing
Effort in Script-
based Testing
(REST)

To help test engineers
 it issues a warning to
fix errors in test
scripts.

Conclusion

Android technology is getting advanced rapidly thus it has become the fundamental
requirement of one’s life. Android applications provides user friendly and effective GUI to
users which is the key factor of its success. Assuring the reliability of GUI for android has
become the most important and crucial task for android developers. Automated testing is the
most advanced and adapted technique for GUI testing nowadays. This paper presents an
overview of different automated GUI based testing techniques for android applications that
could be helpful for android quality assurance team.

Asia Pacific Institute of Advanced Research (APIAR) DOI: 10.25275/apjcectv3i2ict1

P
ag

e1
9

4

P
ag

e1
9

4

References

i. Amalfitano, D., Fasolino, A. R. & Tramontana, P., 2011. A GUI Crawling-based technique for
Android Mobile Application Testing. IEEE Fourth International Conference. s.l., IEEE.

ii. Chu, E., 2011. 10 Billion Android Market Downloads and Counting. [Online]
Available at: http://androiddevelopers androiddevelopers.blogspot.com/2011/12/10-billion-
androidmarket-downloads-and.html [Accessed 6 November 2016].

iii. Domenico, et al, 2012. A toolset for GUI testing of Android applications. Software
Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE. s.l., IEEE.

iv. Domenico, A., 2012. Using GUI ripping for automated testing of Android applications.
Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering. s.l., IEEE/ACM.

v. Grechanik, M., Xie, Q. & Fu, C., n.d. Creating GUI Testing Tools Using Accessibility
Technologies. IEEE International Conference on Software Testing Verification and
Validation Workshops. s.l., IEEE.

vi. Hu, C. & Neamtiu, I., 2011. Automating GUI Testing for Android Applications. Waikiki:
Honolulu.

vii. IDC.Com, 2016. Android dominated the market with an 87.6% share in 2016Q2016. [Online]
Available at: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

viii. Jääskeläinen, A. et al., 2009. Automatic GUI Test Generation for Smartphone Applications –
an Evaluation. s.l., IEEE.

ix. Katara, T. T. a. M., 2011. Experiences of System-Level Model-Based GUI Testing of an
Android Application. IEEE, pp. 377-386.

x. Kropp, M. & Morales, P., n.d. Automated GUI Testing on the Android Platform. Institute of
Mobile and Distributed Systems. Northwestern Switzerland: University of Applied Sciences.

xi. Kwon, O. & Hwang, S., 2008. Mobile GUI Testing Tool Basedon Image Flow. Seventh
IEEE/ACIS International Conference on Computer and Information Science. s.l., IEEE.

xii. Liu, Z., Gao, X. & Long, X., 2010. Adaptive Random Testing of Mobile Application. Computer
Engineering and Technology (ICCET) 2nd International Conference. s.l., ICCET.

xiii. Methong, 2012. Model-based Automated GUI Testing for Android Web Application
Frameworks. International Conference on Biotechnology and Environment Management,
Volume 42, pp. 106-110.

xiv. Volodymyr, A. & Ying-Dar, L., n.d. Automatic Functionality and Stability Testing Through
GUI of Handheld Devices. Chiao Tung, National Chiao Tung University.

xv. Yang, Wei, Prasad, M. & Xie, T., 2013. A grey-box approach for automated GUI-model
generation of mobile applications. Fundamental Approaches to Software Engineering. s.l.,
Springer Berline Heidelberg.

xvi. Yumei, W. & Liu, Z., 2012. A Model Based Testing Approach for Mobile Device. Industrial
Control and Electronics Engineering (ICICEE). s.l., IEEE.

