
 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

1

P
ag

e3
8

1

CAPTURING SECURITY REQUIREMENTS OF MOBILE APPS USING MobiMEReq

Noorrezam Yusopa, Massila Kamalrudinb, Safiah Sidekc
abc UniversitiTeknikal Malaysia Melaka, Melaka, Malaysia

Corresponding email: p031320001@student.utem.edu.my

Abstract

Mobile devices have been widely used around the world as it facilitates interaction between
people and services at anywhere and anytime. Mobile applications are found to be used for
conducting online transactions, saving data and exchanging information. However, issues
related to security have become a major concern among mobile users as insecure applications
may lead to security vulnerabilities that make them to be easily compromised by hackers.
Further, mobile applications that lack of security concerns also could exposed the mobile devices
and users to malwares that could cause failure and malfunction to the application. Thus, it is
important for mobile apps developers to capture security requirements of mobile apps at the
earliest stage to prevent security problems during the implementation of mobile application. In
this paper, we describe our automated approach and tool support, called MobiMEReq that helps
to automatically capture the security attributes requirements of mobile apps. We represent our
extraction using Essential Use Cases (EUCs) and Essential User Interface (EUI) prototype
models. We also compared our tool with the manual approach to evaluate the performance and
correctness of our tool in various application domains. The results of the study show that our
tool is able to help requirements engineers to easily capture security-related requirements of
mobile apps.

Keywords: Security Requirements, Security Attributes, Mobile Apps, Extraction Security
Related Requirements

1.Introduction

Mobile devices are widely used as they allow interaction between people and services anywhere
and anytime. The use of mobile app is rapidly growing especially in online transactions, such as
online purchasing, flight booking and hotel booking. This has led to a plethora of applications
being developed to fulfil the needs of mobile users. However, many mobile app developers tend
to ignore the security aspect of the application at the early stage of development, leading to
malicious attacks and security breaches. It is also found that most of the time, engineers fail to
capture correct security related requirements during the elicitation phase as they faced difficulty
to understand the terms and knowledge of the security (Schneider et al., 2011). Further, the
process of capturing correct and consistent requirements from client-stakeholders is often
difficult, time consuming and error prone (Kamalrudin&Grundy, 2011; Paja et al., 2012).
Therefore, there is a need for automation support to capture security related requirements at the
early stage of mobile apps development.

In our previous work (Yusop et al., 2015), we have conducted a user study to gauge requirements
engineers’ ability to capture the security related requirements from a set of business

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

2

P
ag

e3
8

2

requirements of a mobile app. The study found that almost 60% incorrect security attributes
were captured by the participants for each of the requirements given. This shows that
requirements’ engineers face difficulties to capture the security related requirements, especially
when extracting the security attributes (Yahya et al., 2014; Yusop et al., 2015). Further, it was
found that the longest time taken by the participants to extract the security attributes is more
than 45 minutes, implying that more effort is needed to perform this task. These findings have
motivated us to 1) develop an automated tool support for capturing and extracting security
requirements and to 2) evaluate the tool to demonstrate its ability to enhance the accuracy and
usability for capturing security requirements of mobile apps.

This paper describes the development of a tool support that is able to automatically capture
security requirements of mobile apps using Essential Use Cases (EUCs) and Essential User
Interface (EUI) prototype models. We begin by describing the background of EUCs and EUI
models. We then present our prototype tool for the extraction of security attributes of the
security requirements. Next, we describe an experiment that compares its performance in
extracting security attributes to the same requirements samples as per discussed in (Yusop et al.,
2015). We also discuss an experiment that aims to prove its accuracy in extracting a range of
security attributes from various sets of requirements. We also present the users’ perception on
its usability. Finally, we discuss the implications of these studies and the prototype, as well as
our future work.

2.Background

Security requirements attributes

Security requirements are classified as non-Functional Requirements (NFRs) and they are
related to system confidentiality, integrity and availability. Security requirements attribute or
security attribute can be defined as any piece of information that may be associated with a
controlled implicit entity or user for the purpose of implementing a security policy that is not
necessarily implemented directly in data structures (Ivo et al., 2009). The most common
security related requirements for software are shown in Figure 1 labeled as A (Ian et al., 2006),
while the attributes used for each security related requirements are shown in Figure 1 labeled as
B.

The terms for all of these security requirements and security attributes are specifically found for
software or system only. Based on our previous work (Yusop, Kamalrudin&Sidek, 2015), the
security requirements are found similar for mobile application development and they are
normally considered at the later phase of the system or mobile application development.

Figure 1: Security requirements and its related security attributes

A

B

Security Requirements

Authentication

-Username

-Password

-Radius

-SecureID

(https://sc1.checkpoint
.com)

Authorization

-Public Key
Certificate

-X.509 Certificate

(Vilhan & Hudec, 2013)

Encryption

-Symmetric
encryption

-Attribute Based
Encryption

(Loftis, Chen & Cirella,
2013; Rekha et al.,

2014)

Nonrepudiation

-Digital Signatures

-Digital Message
Receipts

(Chen & Tsai, 2013)

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

3

P
ag

e3
8

3

3. Essential Use Cases (EUCs)

The EUC approach has been defined by Constantine and Lockwood as a “structured narrative,
expressed in a language of the application domain and of users, comprising a simplified,
generalized, abstract, technology free and independent description of one task or interaction
that is complete, meaningful, and well-defined from the point of view of users in a role or some
roles in relation to a system and that embodies the purpose or intentions underlying the
interaction” (Constantine&Lockwood, 1999). Its main objectives are to support better
communication between the developers and stakeholders via a technology-free model and to
assist better requirements capture. These objectives can be achieved by allowing only specific
details relevant to the intended design to be captured (Biddle, Noble&Tempero, 2002). Figure 2
shows an example of natural language requirements (lefthand side) and an example of EUC
(right hand side) when capturing the requirements (adapted from Constantine and Lockwood,
1999). The natural language requirements from which the important phrases are extracted
(highlighted in yellow) are shown on the left hand side of Figure1.

Figure2: Example of Textual Natural Language Requirements (left) and Example of Essential Use Case
(EUC model) (right)

When capturing requirements from natural language text, the EUC approach is found to be
more suitable than the conventional UML use case. An equivalent EUC description is generally
shorter and simpler than a conventional UML use case as it only comprises the essential steps
(core requirements) of user’s intrinsic interest. Specifically, it contains the user’s intentions and
the system responsibilities to document the specific interaction without the need to describe the
user’s interface in detail. The abstractions are mainly used for specifying the steps of the use
case rather than narrating the use case as a whole. It has also been shown (Yahya et al., 2014)
that EUCs are beneficial for capturing security requirements. They have developed a security
pattern library comprising Security related EUC, called the SecEUCs and security related
essential interaction termed as the SecEI. Examples of the SecEI and the SecEUC areas shown in
Table 1.

4. Essential Use Interface (EUI)

EUI prototyping is a low fidelity prototyping approach (Ambler, 2003-2009). It provides the
general idea behind the UI instead of its exact details. Focusing on the requirements rather than
the design, it represents UI requirements without the need for prototyping tools or widgets to
draw the UI (Constantine&Lockwood, 2003). EUI prototyping extends from and works in
tandem with the semi-formal representation of EUCs that also focuses on the users and their
usage of the system, rather than the system features (Ambler, 2004). It thus helps to avoid
clients and REs from being misled or confused by chaotic, evolving and distracting details. EUI
also allows some explorations on the usability aspects of a system. Figure 3 shows examples of
EUI prototypes developed from EUC models.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

4

P
ag

e3
8

4

Table 1: Example of SecEUC Pattern Libraries (Yahya et al., 2014)

SecEI SecEUC

Check username
Identify

self
Check password

Verify username

Make payment Make
payment Complete payment form

Figure 3: Examples of EUI prototype from EUC models

5.Related work

Currently, for security guidance and solution, most developers or engineers refer to the
Common Criteria (CC), although the CC is a bit complex and difficult to understand by novice
(Paja et al., 2012). Further, developers tend to make mistakes when determining the right
security requirements and attributes. This is necessary to identify the requirements and
attributes personally without any supports, such as the automation or the manual training.
Therefore, CC presents the requirements in two distinct categories:1) the functional
requirements, and 2) the assurance requirements. In security behavior, the CCis described in
both types (Ware&Bowles, 2005). Moreover, there is no predefined instruction provided to the
user when using the GUI for dynamic analysis. This leads to various challenges in completing
the security identification process (Aho, Menz&Raty, 2011; Kull, 2012). These instances justify
the need for an automation that can help, especially the novice to elicit security requirements
and attributes. To tackle the issues mentioned, Haley et al. (2008) has proposed an approach to
support security requirements elicitation and analysis. They applied a method to construct a
system context using a problem-oriented notation. However, due to the complexity of the
proposed approach, experts to construct the setting and analysis are needed. Berger, Sohr and
Koschke (2013)also conformed to the claim that software engineers lack the security knowledge
although this body of knowledge is easily accessible. The software engineers and developers face
difficulties to extract and make decision on selecting the relevant piece of security knowledge to
be applied to their design or requirements.

6. Our approach

Motivated from the problems and challenges found in our previous work (Yusop et al., 2015), we
have developed an approach and automated tool called MobiMEReq to assist requirements
engineers to automatically capture an extraction of the security-related requirements for mobile
apps.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

5

P
ag

e3
8

5

7. Mobile Sec Attributes Pattern Libraries

We developed a Mobile SecAttribute Pattern Library that consists of SecEUC, SecEUI and
related security attributes for mobile apps. Both the SecEUC and SecEUI were derived from a
collection of security attribute requirements of mobile apps from real security requirements
taken from the industry and published material (Yusop, Kamalrudin&Sidek, 2015). The
collection of SecEUC patterns from the EUC and EUI models was based on the methodology
defined by Yahya et al. (2014). The selection of the security attributes were based on our analysis
(Yusop, Kamalrudin&Sidek, 2015)and a survey conducted with the industry regarding the most
important security attributes for mobile apps development. Our Mobile Sec Attributes Pattern
library also consists of defined test requirements and test cases. We also recognise that there is a
direct relationship between the SecAttributes and the SecEUC.

As shown in Figure 4, the SecEUC can be associated with one or many security attributes. For
example, ‘Identify self’, an abstract interaction of a SecEUC, is associated with three security
attributes, which are the ‘username’, ’password’ and “biometric id”. This kind of relationship
exists because the security attributes has direct association with the security related requirement
of authentication and authorization.

Figure 4: The relationship between SecEUCmodel,

Table 1: Sample of our SecAttributes Pattern

SecEUC
SecAttribut

e
SecCtrl

Make
payment

Username Authenticat
ion

Transactio
n

 Password

 PaymentID

Verify TAC
Code

Username Authenticat
ion

Authorizati
on

Transactio
n

 Password

 TAC Code ID

 PaymentID

8. Using our approach

We have developed a prototype tool that supports the capture process of security requirements
for mobile apps. This prototype tool is an extension of our earlier (Kamalrudin,
Grundy&Hosking, 2010) tool that runs in both mobile and web applications. This tool assists
security requirements engineers to capture an initial security attribute extracted from textual
natural language requirements and the SecEUC. Both the requirements engineer and client-
stakeholder can capture the security attributes for the security related requirements of mobile
app using MobiMEReq itself or mobile apps to MobiMEReq tool.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

6

P
ag

e3
8

6

Figure 5 shows an overview of our approach and the role of the SecAttribute Pattern Library
when extracting the security requirements of mobile apps at the early stage of requirements
extraction. By implementing the SecEUC and SecEUI model work by Yahyaet al. (2014), our
approach is able to derive Capture of Security attributes from a set of mobile app requirements.
Capture of Security Attributes: Here, the Mobile SecAttribute Pattern Library is used by the
tracing engine to analyse the textual mobile requirements and to map the matching set of
abstract interactions of SecEUC (A1). This approach allows Requirements Engineers (REs) to
capture the important security attributes from the textual mobile requirements gathered from
client-stakeholder (1). Then, the textual requirements are mapped to SecEUC and SecEUI model
(2). As shown in Figure 5, the SecAttribute is generated to visualize the security attributes that
best fit to the generated SecEUC and SecEUI model based on the defined attributes in the
Mobile SecAttribute Pattern Library (3). Next, the requirements engineer (RE) can visualise the
security requirements as a form of workable rapid prototype (4) model of the targeted mobile
app.

Figure5: An overview of our proposed approach.

Figure 6: Example of tool usage for integration security attributes and visualization tool, MobiMEReq.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

7

P
ag

e3
8

7

9.Tool Support

We have developed a prototype tool for the automated extraction of security requirements for
mobile apps. Figure 6 shows the components of the prototype tool such textual requirement,
EUC, EUI, Security attribute and workable prototype. The component focuses on the extraction
as well as the captured mobile security requirements, which are captured from client
stakeholders. This component focuses on capturing the mobile security requirements which
begins with the textual mobile security requirements. In relation to this, the textual
requirements based on user scenario are written in the textual editor (1). Further, the tool
generates the SecEUC models that show the user intention and system responsibility (2) and
SecEUI models that show the essential user interface (3). The visualised security attributes are
generated (4) and the user can test the data from the workable prototype [A](5).

10. Evaluations and Results

We have conducted two studies to evaluate the effectiveness of our new automated tool for
mobile apps security requirements engineering. First, we evaluated the accuracy of the captured
security attributes. Next, we conducted a usability study with 50 undergraduate students.

Figure 7: Accuracy across different set of security requirements

11. Accuracy

We have evaluated the accuracy of our tool by applying nine use case scenarios from nine
different applications of domains derived from different researchers, developers and ourselves.
The types of applications are Medical, Nutrition Controller, Car park booking, Hostel booking,
Car rental booking, etc. The accuracy derived from the tool was evaluated by comparing the
answers with the actual interaction pattern developed by us following Constantine and
Lockwood’s methodology, as well as Yahya et al. (2014).

The evaluation results shown in Figure 7 describe the accuracy of our tool applied in different
requirements. This shows that there is variability across a range of requirements. The average
correctness of the tool is approximately 91%. However, we failed to get 100% correctness due to
the formation of the EUC and EUI models and the linguistic issues, which was also found by
Kamalrudin, Grundy and Hosking (2010). The incomplete generated EUC and EUI models exist
because they depend on the correct extraction from natural language or pattern editor.

User study: Manual vs. Automatic Extraction

In order to further evaluate the efficacy of the tool, we then compared the accuracy and
performance of the tool with manual requirements extraction by 50 novice from our previous
study (Yusop et al., 2015). The novice users in this context are the undergraduate students who
have the limited background of software engineering and requirements engineering, as well as
EUC and EUI models. As shown from Table 3, our tool is able to capture more accurate security

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Accuracy of MobiMEReq

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

8

P
ag

e3
8

8

attributes than the manual approach, with 95% correctness in comparison to 46% correctness
from the manual approach reported in (Yusop, Kamalrudin&Sidek, 2015). The tool failed to
capture only one security attribute (amount) for login requirements. The incorrectness is due to
the passive structure phrases written in the requirement, which are not defined in the library.
This result shows that MobiMEReq is able to facilitatethe participants to capture accurate
security attribute. Further, the automated extraction process takes just over 1 second to execute
in comparison to the average time (30 minutes) taken by the manual approach to extract the
security attributes by the participant in (Yusop, Kamalrudin&Sidek, 2015).

Table 2: Comparison result of correctness between manual extraction and automated validating

tool.

Functional
Requirement

Answers
No. Correct answers No. Wrong answers

Manual Tool Tracing Manual
Tool

Tracing

Register

Username 42 1 8 0
Password 40 1 10 0

Passport/Ic 33 1 17 0
BookingId 30 1 20 0

Login
Amount 48 0 2 1

TACCode 47 1 3 0

Search Flight

FlightNo 17 1 33 0
Destination 9 1 41 0
Username 8 1 42 0
Password 7 1 43 0

Book Flight
Ticket

BookingCode 9 1 41 0
FlightNo 14 1 36 0

Username 11 1 39 0
Password 10 1 40 0

Payment
Ticket

Account No 43 1 7 0
TAC Code 47 1 3 0
TicketID 6 1 44 0

Username 9 1 41 0
Password 7 1 43 0

Correctness ratio

437 18 513 1
46% 95% 54% 5%

12. Usability study

We then conducted a survey to investigate their perceptions and the experience of users using
the tool. The survey was conducted with the same participants in the manual study. The survey
questionnaire focuses on the participant’s evaluation of the tool with respect to its usefulness,
ease of use, ease of learning and satisfaction. In addition, participants were also requested to
write their comments on the four aspects mentioned earlier. The results of this survey are shown
in Figure 7. As shown in Figure 7, we found that 90.66% of the participants felt that the tool is
useful for generating and extracting the list of security attributes, while only 1.33% of the
participants disagreed and 8% of them were neutral. However, they suggested that the tool
could be more useful if it is embedded within a tool that visually displays the EUCs. They
highlighted that such visualizations would allow them to better understand the interaction
between the textual requirements, the EUC and EUI model to generate related security
attributes. 76.66% of the participants agreed that the tool is easy to use, while only 4.67%

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
8

9

P
ag

e3
8

9

disagreed that the tool is easy to use. 18.67% percent of the respondents were indifference or
neutral. Further, they commented that they like and are interested in using the tool. However,
they would like to have a better user interface for security attributes with a more user-friendly
design rather than just the preliminary prototype.

With respect to ease of learning, 77.33% of the respondents agreed that the tool is easy to learn.
21.33% of the participants were indifferent, while only 1.33% disagreed with the statement. The
participants commented that they would like to have a better tutorial or video to overcome the
difficulties of the learning process. With respect to satisfaction, 80% claimed that they were
satisfied with the tool. 18.67% of the participants were indifferent and only 1.33% were
dissatisfied with the tool. They commented that the tool still needs further enhancement. Based
on the results of the survey, overall we can conclude that the tool is useful, user friendly and easy
to learn. In general, most of the participants were satisfied with the MobiMEReq tool. The
participants also evaluated the response time of the MobiMEReq tool for the validating process.
All participants have the opinion that the tool performs faster than the manual approach.

Figure 8: Usability study for capturing security requirements for mobile app.

Conclusion

We have developed an automated capturing approach and tool support called MobiMEReq for
security requirements of mobile apps by using EUCs and EUIs prototype model. Our evaluation
indicates that our approach and tool support MobiMEReq is able to automatically capture the
security attributes of mobile apps.Our future work is to providethe end-to-end validation
approach that can capture and validate security requirements for mobile apps. We also plan to
embed an intelligent algorithm to prioritise the test data; hence, allowing a random set of data
to be used for testing.

Acknowledgement

We would like to thank UniversitiTeknikal Malaysia Melaka for its support and Science fund
grant: 01-01-14-SF0106 and also Ministry of Education (MOE), MyBrain15.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
9

0

P
ag

e3
9

0

References

i. Aho, P., Menz, N. &Raty, T., 2011. Enhancing Generated Java GUI Models with Valid Test Data.
Proceeding of the 2011 IEEE Conf. on Open Systems (ICOS),Langkawi, Malaysia, pp. 310-315.

ii. Ambler, S. W., 2004. The Object Primer: Agile Model-Driven Development with UML 2.0, 3rd edn. New
York: Cambridge University Press.

iii. Berger, B. J., Sohr, K. &Koschke, R., 2013. Extracting and Analyzing the Implemented Security
Architecture of Business Applications. Proceeding of the 17th European Conference on Software
Maintenance and Reengineering.

iv. Biddle,R., Noble, J. and Tempero, E. 2002. Essential Use Cases and Responsibility in Object Oriented
Development. Proceeding of the 25th Australasian Computer Science Conference, Australian Computer
Society, Inc. Chicago, 24(1), pp. 7-16.

v. Chen, C. L. &Tsai, W. C., 2013. Using a Stored-Value Card to Provide an Added-Value Service of Payment
Protocol in VANET. Proceedings of theInnovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), Seventh International Conference, Taichung, pp. 660 -665.

vi. Constantine, L. L. & Lockwood, A. D. L., 2003. Usage-Centered Software Engineering: An Agile
Approach to Integrating Users, User Interfaces, and Usability into Software Engineering Practice.
Proceeding of the 25th International Conference on Software Engineering (ICSE'03) 2003, IEEE
Computer Society, Portland, Oregon.

vii. Constantine, L. L. & Lockwood, L. A., 1999. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centered Design. Pearson Education.

viii. Haley, C. B., Laney, R. C., Moffett, J. D. &Nuseibeh, B., 2008. Security Requirements Engineering: A
Framework for Representation and Analysis. IEEE Trans. Software Eng, pp.133-153.

ix. Ian, G., 2006. Essential Software Architecture. pp. 1-283.

x. Ivo, F. K., George, E., Leslie, C., Leana, G. &Nenad, M., 2009. A Comprehensive Exploration of
Challenges in Architecture-Based Reliability Estimation. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 202-227.

xi. Kamalrudin, M. & Grundy, J., 2011. Generating Essential User Interface Prototypes to Validate
Requirements. Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software
Engineering, pp. 564-567.

xii. Kamalrudin, M., Grundy, J. & Hosking, J., 2010. Managing Consistency between Textual Requirements.
Abstract Interactions and Essential Use Cases. Proceeding of the 2010 IEEE 34th Annual Computer
Software and Applications Conference, pp. 327–336.

xiii. Kull, A., 2012. Automatic GUI Model Generation: State of the Art. Proceeding of the 2012 IEEE 23rd Int.
Symposium on Software Reliability Engineering Workshops (ISSREW),Dallas, TX, USA, pp. 207-212.

xiv. Loftis, C. E., Chen, T. X. &Cirella, J. M., 2013. Attribute-Level Encryption of Data in Public Android
Databases. (RTI Press publication OP-0016-1309). Research Triangle Park, NC: RTI Press.

xv. Paja, E., Dalpiaz, F., Poggianella, M. & Roberti, P., 2012. STS-tool: Socio-Technical Security
Requirements through Social Commitments. Proceeding of the Conference 21st IEEE International
Requirements Engineering Conference (RE), pp. 331-332.

xvi. Rekha, A., Anitha, P., Subaira, A. S. &Vinothini, C., 2014. A Survey on Encryption Algorithms for Data
Security. IJRET: International Journal of Research in Engineering and Technology, 3(12), pp. 131-134.

xvii. Schneider, K., Knauss, E., Houmb, S., Islam, S. &Jurjens, J., 2011. Enhancing Security Requirements
Engineering by Organizational Learning. Requirements Engineering, 17(1),pp. 35-36.

xviii. Vilhan, P. &Hudec, L., 2013. Building Public Key Infrastructure for MANET with Help of B.A.T.M.A.N.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6603432
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6603432
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676249
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676249

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
9

1

P
ag

e3
9

1

Advanced. Modelling Symposium (EMS), European, Manchester, pp. 566 -571.

xix. Ware, M. S. &Bowles, J. B., 2005. Using the Common Criteria to Elicit Security Requirements with Use
Cases. Proceedings of the IEEE, pp. 273-278.

xx. Yahya, S., Kamalrudin, M., Safiah, S. & Grundy, J., 2014. Capturing Security Requirements Using
Essential Use Cases (EUCs). Proceedings of theFirst Asia Pacific Requirements Engineering Symposium,
APRES, Auckland, New Zealand, pp. 16-30.

xxi. Yusop, N., Kamalrudin, M. &Sidek, S., 2015. Security Requirements Validation for Mobile Apps: A
Systematic Literature Review. JurnalTeknologi (Science & Engineering), 77(33), pp. 123-137.

xxii. Yusop, N., Kamalrudin, M., Yusof, M. M. &Sidek, S.,2015. Challenges in Eliciting Security Attributes for
Mobile Application Development. Proceeding of the Conference KSII The 7th International Conference on
Internet (ICONI), Kuala Lumpur, Malaysia.

Other Resources:
xxiii. Ambler, S. W., 2003-2009. Essential (Low Fidelity) User Interface Prototypes. Available at:

www.agilemodeling.com/artifacts/essentialUI.htm

xxiv. User Authentication in Mobile Access. Available at:
https://sc1.checkpoint.com/documents/R77/CP_R77_Mobile_Access_WebAdmin/41587.htm [Accessed
September 2015]

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6777804
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10844

