
 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
6

7

MICROSERVICES ARCHITECTURE FOR TOUR ACTIVITIES APPLICATION

Nuno Silvaa, Paulo Toméb
abEscola Superior de Tecnologia e Gestão de Viseu, Viseu, Portugal

Corresponding email: nuno_silva2010@live.com.pt

Abstract

Tour Activities Management Systems are currently an important issue in the Information
Systems domain. In this paper, we show an architecture to manage tour activities in the
tourism área. This architecture was developed based in the study of the most used software
architectures. Based on this study of architectures, we decided to use the approach of
independent services like microservices pattern. This pattern is used to architect large,
complex and long-lived applications. This applications are composed with multiple
microservices when each one of them is a lightweight and independent service that performs
single functions and collaborates with other similar services. The term microservices
strongly suggests that the services should be as small as possible.

Keywords: Architecture, Microservices, Tour Activities Management Systems

1.Introduction

The Information Technology plays an important role for the tourists (Sigala, 2005; Huang &
Zhu, 2011; Abdulhamid & Usman, 2014). Nowadays, there are a large set of Software
Applications that can be used in the tourism domain. The concept of Tour Activity
Management System was recently introduced in the Tourism domain.

Usually, an Tour Activity Management System comprises of several functions (Aloha
Software, 2016), such as booking.

This paper proposes an architecture for Tour Activity Management Systems. Because
microservices are new frameworks and consists of a flexible pattern, we consider that our
proposal is straightforward.

The microservices pattern (Dmitry Namiot, 2014; Richardson, 2016) is the approach used for
the application architecture. Microservices grew from Service Oriented Architecture (SOA),
which gained popularity in the early 2000s and emerged as a way to combat large monolithic
applications.

The powerful concept of microservices is gradually changing the industry of development
webservices applications. This architecture concept is an approach to develop an application
as a set of small independent and autonom services. Services that use some lightweight
mechanisms to communicate and they are deployed absolutely independently.

This article describes how we use the increasingly popular microservices architecture pattern
to develop a new application for the tourism area, specifically for tour activities companies.
This application has similar goals to help companies to manage all related information like
reservations, availability and payments.

Software Systems in Tour Activity domain

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
6

8

In the tour activity area, most of the systems that are currently available is based on
monolithic architecture. This architecture is the common approach on the industry of
software development. It is developed, tested, packaged, and deployed as a unique service.
But, internally this architecture may have several services, components, etc.

With Monolithic application, it’s not easy to understand and modify as the application is
getting bigger. With the growing application, it is difficult to add new developers or to
replace leaving team members.

Next, we enumerate several systems that was studied and analysed to come on a conclusion
about the best architecture to choose for the application that will be created. The next
comparison table is composed by the components of each referenced system.

Table 1: System Analysis

Component/System Rezdy (2016) Rezgo (2016) TourCMS (2016) Checkfront (2016)

Architecture - Monolithic - -

API REST REST REST REST

Response Formatting JSON / XML XML XML JSON

Authentication API Key API Key - OAuth2

The Application Architecture

Many organizations use the microservices and can better meet the needs of modern
application development. A small change to a service can be committed, tested and deployed
immediately since changes are isolated from the rest of the system. In the case of one service
requiring extra performance, we just need to scale the individual service that needs
additional capacity rather than scale all the system like in Monolithic systems. On
microservices, it is possible to have small teams developing each service and have different
programming languages on each service. Essentially, between services must be defined as a
contract that will be shared by all development teams on what each service should provide to
others.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
6

9

Figure 1: System Architecture

In a general way, the application is divided into two layers, Client and Server. The Client
layer is composed by all the platforms to perform the interaction with final user, in this case,
the front end website and all mobile applications. On the Server side we have all the
application logic based on the microservices pattern. This Layer is composed by multiple
patterns like Service Discovery and Register, API Gateway, Microservices
Communication and Authentication. This patterns help to understand the application
infrastructure and distribution of each responsibility on the behaviour of all components and
services.

All the infrastructure is supported by Docker (2016), one of the biggest companies in the
technology industry today. In the official documentation, Docker was defined “an open
platform for developing, shipping and running applications”. In simple terms, this tool helps
to deploy and run an application with all dependencies that it needs to run. That application
is a single and isolated container that we can just throw at any server and it will simply work.
A Docker container starts in the order of seconds. We can describe a Docker containers as
lightweight VMs, but in reality they are much more than that. On VMs we can probably run
just a few of them on a regular piece of hardware, with Docker it's easy to run dozens of
Docker containers on the same piece of hardware.

Each small and autonomous service of the application is a Docker container and the set of all
services is defined as a swarm. To deploy and build this swarm of independent services we
use Docker Compose, defined by official documentation as “a tool for defining and running
complex applications with Docker. With Compose, you define a multi-container application
in a single file, then spin your application up in a single command which does everything
that needs to be done to get it running.”

Service Discovery and Register

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
7

0

We are using Consul as a service discovery mechanism and Registrator to transparently
register our containers there. Consul can be connected by multiple Clients that use Consul
API to register new services, specifying a name and additional information in the form of
tags. Then, by the same way, the client can query Consul for services that match their
criteria. The main function of Registrator is ensuring that they are started on the same host
where it is currently running, extracting information from them and then registering those
containers on Consul server. It is designed to be run as an independent Docker container.
With this approach, our containers are completely ignorant about how they will be
discovered and about all infrastructure information.

 API Gateway

The API Gateway is the entry point of all requests by clients that use the application,
basically it works as a proxy. That proxy pass the request to the correct service and transmit
the response back to client. To make this routing, we use Nginx with a configuration file
generated by consul-template library. Consul template queries a Consul instance and
updates a template which generate a Nginx configuration file that contains all the
correspondent address and port for each service.
Microservices Communication

The communication between services is the biggest challenge in the development of
application. One obvious approach is to partition services by use of case, and when each
service communicate with others. Http protocol is the initial concept that we thought, but the
biggest problem is the potential delays for remote calls. Then, we find gRPC, a HTTP/2 RPC
Framework for Microservices. Google considers gRPC a “bandwidth and CPU efficient, low
latency way to create massively distributed systems that span data centers, as well as power
mobile apps, real-time communications, IoT devices and APIs.”. Can be used in many
scenarios, but gRPC is targeted primarily for microservices. A service interface and the data
types it handles is defined using the Protocol Buffers IDL, and with the help of compilers one
can generate client and server stubs in 10 languages: C, C++, C#, Go, Java, Node.js,
Objective-C, PHP, Python, Ruby.

Authentication

The authentication of the user on the system is made by a simple process. Basically, users
request the authorization in the first instance by login and the authentication service returns
a session token to the user. Then, on each request the user have to send the given token and
then is validated by the authentication service. Next, the required service by the user is
informed that user is authorized to perform the requested action and this service perform the
action returning the response to the user. This process must be used for any action which
need the authorization by the system.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
7

1

Database

Each service has their own database with their own data and own structure. The
relationships between databases is made by external referenced id’s. With this approach, we
have the flexibility to change the structure of one database without affecting the entire
database system.
For some services with the probability of saving greatest volumes of data and make a biggest
number of queries, we will create a Non Relational Database (NoSQL) like mongodb, for
example. In the other side on database that save a small number of data, we plan use a
relational database like Postgres SQL.

Conclusions and Future Work

In this article, we propose an architecture for Tour Activities Management System based on
Microservices patterns. This architecture is extensible and can be adjustable for future
developments.
The architecture is already implemented and is being tested in a real case situation.
Regarding to the implemented system we can assure that the system is stable and can easily
increase to other functions.

 Asia Pacific Journal of Contemporary Education and Communication Technology (APJCECT)
ISBN: 978 0 9943656 82; ISSN: 2205-6181

Year: 2017, Volume: 3, Issue: 1
www.apiar.org.au

Asia Pacific Institute of Advanced Research (APIAR)

P
ag

e3
7

2

References

i. Abdulhamid, S. M. & Usman, G., 2014. Destination Information Management System for
Tourist.

ii. Aloha Software. 2016. Activity Manager Software Screen Shot - Travel Industry Management
Software for Tour Operators - Maui Hawaii Travel Industry Software. Available at:
http://www.alohasoftware.net/activitymanager.shtml [Accessed May 30, 2016]

iii. Checkfront HQ. 2016. Checkfront Online Booking System & Reservation Software. Available at:
https://www.checkfront.com/ [Accessed May 30, 2016]

iv. Dmitry Namiot, M. S. S., 2014. On Micro-Services Architecture. Int. J. Open Inf. Technol, 2(9),
pp. 24–27.

v. Docker, I., 2016. Docker Compose. Available at: https://docs.docker.com/compose/ [Accessed
May 30, 2016]

vi. Huang, W. & Zhu, B., 2011. Management of Tourism Group and Technology of The Personalized
Tour Based on RFID. In 2011 Chinese Control and Decision Conference (CCDC), pp. 975–978.

vii. Rezdy. 2016. Online Booking Software for Tour Operators. Available at:
https://www.rezdy.com/ [Accessed May 30, 2016]

viii. Rezgo. 2016. Rezgo | Powering Tour & Activity Businesses Worldwide. Available at:
https://www.rezgo.com/ [Accessed May 30, 2016]

ix. Richardson, C., 2016. Microservices Architecture Pattern. Available at:
http://microservices.io/patterns/microservices.html [Accessed May 30, 2016]

x. Sigala, M., 2005. New Media and Technologies: Trends and Management Issues for Cultural
Tourism. In International Cultural Tourism. Elsevier, pp. 167–180.

xi. Travel UCD Limited. 2016. TourCMS - Tour Operator Reservation System and Website CMS.
Available at: http://www.tourcms.com/ [Accessed May 30, 2016]

