

 www.apiar.org.au

P
ag

e5
8

CONTEXT DEFINITION FOR BDD SCENARIOS UPON

DEMO METHODOLOGY

Jiri Matula a, Frantisek Hunka b, Jaroslav Zacek c

abc University of Ostrava, Ostrava, Czech Republic

Corresponding email: jiri.matula@osu.cz

Abstract

Behaviour-driven development (BDD) methodology is the approach of how to keep track of the
user's requirements during the software development. The paper deals with utilization of DEMO
methodology to improve accuracy of context given in BDD scenarios. Ontological nature of
transactions described in DEMO methodology helps to focus on production and coordination
acts and facts in order to support important company's business processes. Integration of
transactions in the form of user stories into BDD scenarios sets their context of feature
definition upon ontological description of business in its existential essence. Thanks to domain-
specific languages like Gherkin, a kind of BDD scenario is also executable and applicable in an
automation process of software development. The beneficial consequence is the fact that
developers are introduced to essential business goals and implemented features directly
correspond with activities performed by employees in companies.

Keywords: Behaviour-driven Development, DEMO Methodology, User Requirements,

Acceptance Testing

1.Introduction

An accurate definition of user requirements specification is the foundation stone of any good
information systems. However, this part of software development is also very prone to errors
and misunderstandings. According to Standish Group 2015 Chaos Report there is still
significant number of failing software project - almost 19% - and this number is not decreasing
(17% in 2014). There are many techniques adopted by agile approaches how to gather user
requirements specification precisely. Rational Unified Process uses Use Cases and scenarios to
control the development process to ensure that requirements are always in a first place (Use
Case-driven approach). This technique visualizes a relationship only between an actor and the
system without any other context (e.g. transactions, non-functional requirements) and this
technique fits well for bigger information systems. Requirements of the gathering process in
current methodologies (Scrum, Kanban) still rely on a one-way confirmation and inherently
cannot provide instant automated feedback during software development. These methodologies
have only one kind of feedback – user acceptance testing, in most cases performed manually by
testers.

BDD methodology works well with a declarative approach. Therefore, this paper tries to deal
with user requirements using declarative semantic. Using a declarative approach to describe
business contracts can be found in Pesic & Van der Aalst, 2006 and authors use finite automata
theory to simplify a relationship between elements. In another paper, authors use XML as a data
source and brings a new extension to Courteous Logic Programs (Grosof, Labrou & Chan, 1999).

 www.apiar.org.au

P
ag

e5
9

There are also attempts to use a semantic driven approach for user requirements verification
(Gigante, Gargiulo & Ficco, 2015). However, the paper lacks necessary verification. Fully
ontological approach can be found in Skjæveland et. al, 2015 to access generic data source. Some
research tries to define a link between data mining and business process management (de Leoni,
Maggi & van der Aalst, 2015). This paper specifically points the fact that constraints are described
by a declarative process model. Authors also state that is possible to discover that the model is
based on event data. However, if all states are not presented on the model (typically if unknown
information system is being built with no best practices), proper technique is still missing to
determine all states in small and middle size systems.

DEMO (Design & Engineering Methodology for Organizations) methodology (Dietz, 2006)
defines an organization as a composition of people (social individuals) that perform two kinds of
acts - production acts and coordination acts. The result of successfully performing a production
act is a production fact. An example of a production fact may be that the package that has been
delivered has been paid, or offered service has been accepted. All realization issues are fully
abstracted out. Only the facts as such are relevant, not how they are achieved. The result of
successfully performing a coordination act is a coordination fact. Examples of coordination acts
are requesting and promising a production fact. Coordination and production acts and facts are
arranged into a transaction pattern.

Figure 1: The standard transaction pattern. Source: Kervel (2012)

 www.apiar.org.au

P
ag

e6
0

DEMO distinguishes the basic, standard and complete transaction patterns according to the
numbers of transaction steps. The diagram in Fig.1 shows interrelated acts and facts (states) of
the standard pattern. The partition of the initiator contains the coordination acts and the
decisions are represented by diamonds in the diagram. The production act and the production
fact are depicted in grey colour in the partition of the executor. The reason for locating the
production fact in the executor partition is that the production is usually placed separately from
the initiator partition. The coordination facts are situated in the middle of the figure as states in
bold format. The complete transaction pattern is extended by four cancellation patterns
regarding to the standard transaction pattern. The advantage of this methodology is completely
defined as a state machine inside the transaction pattern. The all essential states are defined in
underlying infrastructure.

The BDD technique which has been developed from the test-driven development technique
utilizes principles of user stories and test driven development approach (Smart, 2014). At the
same time, user stories technique is the foundation stone for the BDD testing scenario template,
which is observable from a comparison of BDD and user story template below. User stories
typically follow this recommended template (Cohn, 2004):

As a <type of user>, I want <some goal> so that <some reason>.

In comparison, the recommended template for BDD scenarios looks as following (Smart, 2014):

Feature [title]
In order to [benefit]
As [role]
I want [feature]
Scenario: [title]

Given [context]
And [some more context]
...
When [some event occurs]
And [some other event]
…
Then [outcome]
And [some other outcome]
...
Scenario: [title]
…

Figure 2: Standard BDD scenario template.

There is a strong similarity between these two templates. In the authors’ previous research, the
method has been presented which allows to transform transaction into the form of user stories
upon DEMO methodology. The modified version of the template for user stories which utilizes
transactions defined in DEMO methodology is following:

As an <initiator/executor>, I perform a task in <transaction> so that <result of transaction>.

Such defined user stories have their ontological origin. The user type is every time explicitly
defined, which excludes misinterpretation of intended user type. Particular transactions are
coupled with real business processes, which prevents inclusion of artificially constructed
processes or user’s wishes unrelated to ontological essence of business. In addition, particular
transactions strictly define expected results from the process. Eventually, additional evaluation
criteria for the results of transactions might be set. Derived user stories in accordance with

 www.apiar.org.au

P
ag

e6
1

DEMO methodology fulfil C4E qualities (coherent, consistent, comprehensive, concise and
essence). Also, they always relate to a concrete business process and an actor.

2. Giving context to BDD scenarios

A previously mentioned fact that user stories are part of BDD scenario template gives an
opportunity to apply modified version template into a BDD template scenario. In the context of
user stories in the form of transactions, proposed modified version of template for BDD scenario
looks as follows:

Feature [title] - [transaction ID]
In order to [outcome of the transaction]
As [initiator/executor]
I perform task in a [transaction]
Scenario: [title]

Given [context]
And [some other context]
...
When [some event occurs]
And [some other event]
...
Then [outcome]
And [some other outcome]
...

Scenario: [title]
…

 …
Figure 3: Modified BDD scenario template.

Role has been replaced for executor or initiator who takes a part in the transaction. Particular
scenarios describe the business situation with aim to fulfil business goals denoted as outcomes
of transactions. All the scenarios have to respect user story given in the feature description.

As an explanatory case study which can be used is a company which delivers packages to their
customers. BDD methodology does not strictly recommend how to specify user story for feature
description. In case of proposed concept, there exists only one proper definition of user story
represented as transaction which is composed into BDD scenario. This determines context for
the scenarios given in feature description. According to proposed concept, the BDD scenario is
as follows:

Feature Package delivery – T01
In order to package being delivered.
As driver
I want to deliver a package to recipient.
Scenario: Planning the route to destination

Given I have a list of addresses scheduled for :day
When I choose the closest available customer
Then I am able to find the optimum route to destination via Google Maps

Figure 4: Example of real BDD scenario according to proposal.

Also, such definition follows the syntax of domain-specific language Gherkin and it is executable
via BDD testing frameworks like Behat, Cucumber and others. For further illustration, the
output from testing framework Behat is following:

 www.apiar.org.au

P
ag

e6
2

Feature: Package delivery – T01
In order to package being delivered.
As messenger
I want to deliver a package to recipient.

Scenario: Planning the route to destination

features/delivery.feature:6
Given I have list of addresses for scheduled for today

 # FeatureContext::IHaveListOfAddresessFor ScheduledForToday()
When I choose the closest address for the delivery
FeatureContext::iChooseTheClosestAddress
Then I am able to find the fastest route to destination via Google Maps
FeatureContext::iAmAbleToFindTheOptimumRouteToDestinationViaGoogleMaps()

1 scenario (1 passed)
3 steps (3 passed)
0m0.01s (9.55Mb)

Figure 5: Output from Behat BDD testing framework executed over the previous BDD scenario.

Feature scenarios are validated against production code. It ensures that production code follows
activities in company business and it is tested within every build pushed on the server.

3.Discussion

Derived user stories, in accordance with DEMO methodology, do not have duplicities nor
contradictions and always are addressed to a definite business process and actor. All these
qualities are included also in BDD scenario. User stories without DEMO analysis do not strictly
differentiate user types. For example, a role client and potential client are often as the same role
customer. In general, this may easily lead to confusion of roles and cause undesirable
refactoring due to an incorrectly modelled role in information systems. Especially when
developers are not familiar with entities which are using the information system.

Integration of transactions defined in DEMO methodology into BDD feature scenarios improves
accuracy of the context in BDD testing scenarios due to its relation to existing coordination and
production acts and facts. Nevertheless, ontological nature of defined transaction presumes an
existence of essential business processes. Hence, the proposed method is suitable, especially for
development of software products, which support business processes in companies. Once the
transactions became a part of BDD scenario it involves the developer or analyst to understand
purpose why the feature is implemented. Also, it sets boundaries for the particular BDD
scenarios which are consequently linked to existing essence of the business. Thanks to fact that
the BDD template structure of feature description is compatible with domain-specific language
Gherkin which allows an automatic verification of user requirements against production code.
On the other hand, analysis of transactions requires a deep analysis of business processes in
company. If the analysis is not performed in accordance with DEMO methodology, it may lead
to the same result as in the case of user stories, which are written purely up to recommendations
of the agile community. Also, it comes to considerations maps particular states of transactions
directly to scenarios steps defined in BDD which will be the objective of further research.

Acknowledgment

The paper was supported by the grant provided by Ministry of Education, Youth and Sport
Czech Republic, reference no. SGS15/PRF2016 and no. SGS03/UVAFM/16.

 www.apiar.org.au

P
ag

e6
3

References

i. Cohn, M., 2004. User Stories Applied: For Agile Software Development. Boston: Addison-Wesley,
pp. 31-41.

ii. de Leoni, M., Maggi, F. M. & van der Aalst, W. M., 2015. An Alignment-Based Framework to
Check the Conformance of Declarative Process Models and To Pre-Process Event-Log Data.
Information Systems, pp. 258-277.

iii. Dietz, J. L. G., 2006. Enterprise Ontology: Theory and Methodology. New York: Springer, pp. 16-
31.

iv. Gigante, G., Gargiulo, F. & Ficco, M., 2015. A Semantic Driven Approach for Requirements
Verification,. Intelligent Distributed Computing, 8, pp. 427-436.

v. Grosof, B. N., Labrou, Y. & Chan, H. Y., 1999. A Declarative Approach To Business Rules in
Contracts: Courteous Logic Programs in XML. Proceedings of the 1st ACM Conference on
Electronic Commerce, pp. 68-77.

vi. Pesic, M. & van der Aalst, W. M., 2006. A Declarative Approach for Flexible Business Processes
 Management, Business Process Management Workshops. Springer Berlin Heidelberg, pp. 169-
 180.

vii. Skjæveland, M. G., Giese, M., Hovland, D., Lian, E. H. & Waaler, A., 2015. Engineering Ontology-
 Based Access to Real-World Data Sources. Web Semantics: Science, Services and Agents on the
 World Wide Web, pp. 112-140.

viii. Smart, J. F., 2014. BDD in Action: Behavior-Driven Development For The Whole
Software Lifecycle. New York: Manning Publications Company, pp. 3-32.

ix. Van Kervel, S. J. H., 2012. Ontology driven Enterprise Information Systems Engineering.
Doctoral Dissertation, SIKS Dissertation series nr. 2012-50, Delft University of Technology.

