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Abstract 

 

A simpler and shorter method of evaluating the integrals of powers of cosine is presented in 
this paper.  Generalized formulas in evaluating integrals of odd and even powers of cosine 
were derived by repeatedly applying the reduction formula for cosine to the integral of the 
nth power of cosine.  From the behavior of the coefficients and exponents of the terms of the 
derived formulas, algorithms were developed. The new method was compared with the 
traditional method and results showed that the new method was simpler and shorter.  The 
derived formulas and developed algorithms will be very useful in the study of higher 
mathematics courses and in many engineering applications. 
 
Keywords: Integration, Mathematical Algorithm, Powers of Cosine, Reduction Formula, 
Trigonometric Identities  
 

1. Introduction 

One of the essential topics in the study of Integral Calculus is evaluating integrals of powers 
of trigonometric functions. The traditional methods usually use trigonometric identities to 
transform powers of trigonometric functions into a form where direct integration formulas 
can be applied.  The identity used depends on whether the power is odd or even.  For odd 

powers of cosine, the identity xx 22 sin1cos   is applied.  The integrand is transformed by 
factoring out one cosine and the remaining even powered cosine is converted into sine using 
the identity.  The integral is then evaluated using a power formula with the factored cosine 
used as the differential of sine.  For even powers of cosine, the double angle identity 

)2cos1(
2

1
cos2 xx 

is used to reduce the power of cosine into an expression where 
appropriate integration formulas can already be applied (Dampil, 2014; Dampil, 2015; Hass, 
Weir, & Thomas, 2014). 
 
Another method used to evaluate powers of cosine is by using a reduction formula.  A 
reduction formula transforms the integral into an integral of the same or similar expression 
with a lower integer exponent (Riley, Hobson, & Bence, 2010).  It is repeatedly applied until 
the power of the last term is reduced to two or one and the final integral can be evaluated.   
Using integration by parts, the reduction formula for cosine is (Stewart, 2014). 
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The methods discussed above are normally tedious and time consuming depending on the 
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given power of cosine.  As shown in the studies of Dampil (Stewart, 2012; Suello , 2015), 
deriving generalized formulas can simplify solutions.  The study of Varberg, Purcell and 
Rigdon (2014) also revealed that the reduction formula for sine can be generalized and a 
simpler algorithm can be developed to evaluate integrals of powers of sine.  The objective of 
this paper is to extend the same concept to the integrals of powers of cosine.  Generalized 
formulas were derived by the repeated application of the reduction formula to the integral of 
the nth power of cosine.  The behavior of the coefficients and exponents of the terms in the 
derived formulas were used as the basis for developing a simpler algorithm.  

 

2. Derivation of Formulas 

Given:
axdxn

cos
, where n is any integer 

 
Using the reduction formula, 
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Applying the reduction formula to the last term 
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Applying the reduction formula again, 
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Simplifying, 


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The same trend continues until the last term becomes 

               
axdxcos

       if n is odd, or 

               
axdx2cos

      if n is even 
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2.1 Odd Powers 



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Integrating the last term, 
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Factoring out the common factor gives the formula, 
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It can also be written as 
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2.2 Even Powers 
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Applying the reduction formula to the last term, 
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Simplifying, 
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Factoring out the common factor gives, 
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The formula may also be written as, 
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3. Development of the Algorithm for the New Method 

A simpler and easier procedure can be developed from the observed trends of the coefficients 
and exponents of the derived formulas.  These are summarized as follows: 
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3.1 Odd Powers 

 

 Write a

axsin

.  This will be followed by a series of cosine terms.  For example, 

xdx2cos5


 

2

2sin x

 

 The first term of the series has a coefficient of n

1

and the exponent of cosine is n-1.  
This coefficient and exponent will be used in determining the coefficient and 
exponent of the next term. 
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x
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5
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2sin 4

 
 For the next term, the coefficient has a numerator equal to the product of the 

exponent and the numerator of the preceding term.  The denominator is the 
product of the denominator and exponent minus one of the preceding term.  The 
exponent of cosine is the exponent of the preceding term minus two. 
 

xx
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 Follow the same procedure until the exponent of cosine becomes zero which 
terminates the series. 
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 Add a constant of integration. 
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3.2 Even Powers 

 

 Write a

axsin

.  This will be followed by a series of cosine terms.  For example, 

xdx3cos6


 

3

3sin x

 

 The first term of the series has a coefficient of n

1

and the exponent of cosine is n-1.  
This coefficient and exponent will be used in determining the coefficient and 
exponent of the next term. 
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x
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 For the next term, the coefficient has a numerator equal to the product of the 

exponent and the numerator of the preceding term.  The denominator is the 
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product of the denominator and exponent minus one of the preceding term.  The 
exponent of sine is the exponent of the preceding term minus two. 




xx

x
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6
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3
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 Follow the same procedure until the exponent of cosine becomes one which 

terminates the series. 
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 The next term is the product of x and the coefficient of the last term in the cosine 

series. 
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 Add a constant of integration. 
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4. Comparison between the Old and the New Method 
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Using the New Method 
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Evaluate 
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  
 
Using the Old Method 
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  Using the New Method 
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5. Conclusion 

The new algorithms developed revealed that the integrals of powers of cosine can be 
evaluated easily since the tedious repetitions of applying the reduction formula, or 
expansions of identities using the traditional methods, are eliminated.  Integrals can be 
evaluated directly since the procedure simply involves coefficients and exponents.  The 
derived formulas and algorithms will be very useful in higher mathematics courses like 
Differential Equations and Advanced Engineering Mathematics and even in the fields of 
Physics and Mechanics.  It can also be used in many engineering applications specifically in 
electricity and magnetism, waves, heat and mass transfer and reaction kinetics. It is also 
recommended that the procedure also be applied to the integrals of powers of other 
trigonometric functions.  
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