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Abstract 

Financial big data analysis has recently become a popular research field. Kernel machines (such 
as support vector machines, SVM) have demonstrated good performance in many areas of 
pattern recognition. However, the representation of traditional kernel machines is not sparse. A 
sparse model representation in machine learning is expected to improve the generalization 
performance and computational efficiency. Moreover, in big data analysis, high-dimensional and 
nonlinear distributed data generally degrade the performance of a classifier due to the curse of 
dimensionality, especially in financial distress predictions. To address these problems, this study 
proposes a novel system using kernel sparse representation classifiers (KSRC) to discriminate 
financial statement data. The statement data are first projected to a low-dimensional subspace 
and is then classified by the KSRC. Compared with other data mining systems, the proposed 
system performs best. 
 
Keywords: Sparse Representation, Orthonormalized Partial Least Square Analysis, 
Dimensionality Reduction, Data Mining 
 

1  Introduction 

Mining financial big data is important in many applications. Financial data mining, such as that 
involved in predicting bankruptcies, has become a popular topic owing to the late-2000s 
financial crisis. The objective of this paper is to develop a reliable big data analysis system for 
bankruptcy predictions. Our strategy is to develop a sparse representation based classifiers on 
some low-dimensional representative space that can effectively discriminate the data. This 
expert system can prevent banking and investment institutions from investing in a distressed 
company. 
 
Recently, many approaches from data mining to artificial intelligence have been developed for 
solving these problems. These approaches include inductive learning (Han et al., 1996; Shaw 
&Gentry, 1998), case-based reasoning (Buta, 1994; Bryant, 1997), neural networks (Bortiz & 
Kennedy, 1995; Jo &Han, 1996;Coakley & Brown, 2000; Nasir et al., 2000; Tang &Chi, 2005), 
rough set theory (Dimitras et al., 1999; Ahn et al., 2000), and support vector machines (SVMs) 
(Wu et al., 2006; Hua et al., 2007). SVM (Vapnik, 1999; Cristianini &Shawe-Taylor, 2000), a 
special form of kernel classifiers, has become increasingly popular. The formulation of an SVM 
simultaneously embodies the structural risk (a maximum margin classifier) and empirical risk 
minimization principles. SVM has good performance in many areas and has been regarded as the 
state-of-the-art technique for regression and classification applications. Despite these attractive 
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features and many good empirical results obtained using SVMs, some data modelling 
participants have begun to realize that the ability of the SVM method to produce sparse models 
has perhaps been overstated. For example, it has been shown that the standard SVM technique is 
not always able to construct parsimonious models in system identification (e.g. Drezet 
&Harrison, 1998). 
 
Sparsity-based representation is a task of reconstructing a given signal by selecting a relatively 
small subset of dictionary or basis elements from a large dictionary while keeping the 
reconstruction error as small as possible. A sparse model representation in machine learning is 
expected to improve the generalization performance and computational efficiency (Floyd 
&Warmuth, 1995; Graepel et al., 2000; Zhang &Zhou, 2010). Sparsity-based algorithms have 
been rapidly applied to many practical engineering problems and almost always leads to 
encouraging results (Mallat, 2008; Baraniuk et al., 2010). This is because most natural signals 
can be compactly represented by only a few coefficients that carry the most important 
information in a certain basis or dictionary. Moreover, it is based on the observation that despite 
the high dimensionality of natural signals, the signals in the same class usually lie in a 
low-dimensional subspace. 
 
In machine learning, sparsity usually refers to the extent to which a representation model 
contains null values and can be measured by the number of nonzero coefficients in a decision 
function. The less the number of nonzero elements is, the better sparsity we get. The mechanism 
of maximizing the sparsity of a model representation can be regarded as an approximative form 
of the minimum description length principle which can be used to improve the generalization 
performance (Duda et al., 2000). Sparse representation based classifier (SRC), a combined result 
of machine learning and compressed sensing, shows its good classification performance on many 
data. 
 
Kernel methods are known to significantly improve the performance of classical pattern 
recognition algorithms, by implicitly exploiting the higher-order structure of the given data that 
may not be captured by linear models. This is exceedingly true in cases where the background 
and target subspaces are not linearly separable. Kernel sparse representation based classifier 
(KSRC) based on SRC and the kernel trick (a technique in machine learning) is a nonlinear 
extension of SRC, which can remedy the drawback of SRC. Namely, KSRC is based on kernelized 
sparse representation, where a test sample in the high-dimensional feature space induced by a 
kernel is assumed to be sparsely represented by a non-linear combination of the training samples 
in the same feature space. The sparse vectors can be efficiently recovered by kernelized 
algorithms. 
 
The power of the kernel method lies in the implicit use of a high-dimensional RKHS 
(reproducing kernel Hilbert space), induced by a positive semidefinite (PSD) kernel (Scholkopf 
&Smola, 2002). Kernel classifiers map input data into a high-dimensional RKHS, where simple 
linear classification is performed. However, due to the large amount of data from public financial 
statements that can be used for bankruptcy predictions, the high dimensional input data makes 
kernel classifiers infeasible due to the curse of dimensionality (Bellman, 1961). Consequently, 
one needs to transform the input data space into a suitable low dimensional subspace that 
optimally represents the data. 
 
Traditional dimensionality reduction methods are unsupervised in nature. They fail to 
incorporate the label (or class) information so as to guide subspace or manifold learning. To 
address this problem, this study constructs classifiers on subspace extracted by kernel 
orthonormalized partial least square (KOPLS, Arenas-Garcia &Camps-Valls, 2008) so as to 
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prevent the curse of dimensionality. The method of partial least squares (PLS) (Rosipal &Kramer, 
2006) creates score vectors of inputs and outputs, which have a maximum covariance with each 
other. PLS could be thought of as a method for finding directions (or basis vectors) that are good 
at distinguishing between different output labels. These basis vectors can be used as the 
dictionary for sparse representation classifiers. However, PLS is not invariant to linear 
transformations. This means that the analysis will be different depending on how the inputs are 
scaled. For example, doubling a input or choosing different inputs within the same space, will 
give different answers. We could overcome the lack of invariance by simply orthonormalizing the 
inputs first. This is the orthonormalized PLS (OPLS, Worsley et al., 1998). 
 
The remainder of this paper is organized as follows: Section 2 introduces the algorithms of KSRC, 
while Section 3 describes the study data and discusses the empirical findings. Conclusions are 
given in Section 4. 

2  The Proposed Methodology 

In the first stage, KOPLS optimally project original data space to a low dimensional subspace 
which has maximum covariance between inputs and outputs. In the second stage, SRC is 
constructed on the the low dimensional representative space for classifications. For the details of 
KOPLS, please refer to Arenas-Garcia and Camps-Valls (2008). 

2.1  Sparse Representation Based Classifier 

The basic problem of classification is to use training samples from different classes of signals to 

correctly determine as to which class the test signal belongs to. The in  training samples of a 

particular i th class are arranged as the columns of a matrix i
nm

i
niiii RxxxD


],...,,[= ,,2,1  where 

each training sample x  is a column vector and mRx . The basic assumption in the theoretical 

development of SRC is that the samples of the matrix iD  lie on linear subspace. 

Any test sample lies in the linear span of training samples belonging to the i th class, 
given as follows (Wright et al.,2009):  

 
i

ni
i

niiiii xxxy ,,,2,2,1,1 ...=    (1) 

 for some scalars ji , . Matrix D , which is also known as the dictionary, is defined to be formed 

by the entire set of basis vectors (produced by KOPLS) of all the K  classes, given as follows:  

 ],...,,[= 21 KDDDD  

here 
nmRD   where n  is the size of the dictionary i.e. total number of basis vectors. Then y  

may be linearly represented in terms of all the training samples as follows:  

 ,= mRDy   (2) 

where   is known as the coding vector, given as ],...,,[= 21 K . Here i  is the sub-coding 

vector associated with the matrix iD . Ideally 
nT

niiii R,0,...0],...,,[0,...,0,= ,,2,1   is a vector 

whose most entries are zero except the elements that are associated with the i th class. Then one 

can represent y  as m

ii RDy   , which means that, assuming that y  belongs to the i th 

class, in a practical situation, most of the coefficients in )( ikk   are quite small and only 

coefficients )=( ikk  have significant values. This means a test sample may be represented by 

training samples from the same class. The test signal is more accurately determined depending 
on the sparsity of recovered  . This leads to the determination of the sparsest solution of 
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Dy =  (Huang &Aviyente, 2006) using the 0l -norm minimization problem:  

 .=||||min 0 Dytosubjectx  (3) 

 

Recent researches reveal the fact that finding the sparsest solution via 0l -minimization has been 

converted to an 1l -minimization problem, since the combinatorial 0l -minimization is 

essentially an NP-hard problem and 1l -minimization is known as the closest convex function to 

0l -minimization (Donoho, 2006). Consider the case of noisy data, the model can be modified as  

  Dy =  

where   is a noise vector with bounded energy  ||<|| . The problem can be modified as  

 ,||||||||min 21  Dytosubject  (4) 

 where 2||||   denotes the 2l -norm. This model can be written in its equivalent form given as 

follows:  

 .||||||||minarg=ˆ 1

2

2  Dyx
x

 (5) 

 The residuals, 2||ˆ=|| iii Dyr   are computed ( î : coding sub-vector associated with class i , 

determined from ̂ ). The output of the classifier is the class with the smallest residual. 
For kernel extension of SRC, we map samples from original feature space into a high 

dimensional feature space H  by a nonlinear function )(: xx   . Let 

)](),...,(),([= 21 KDDD   represent the matrix composed of all the training samples after the 

nonlinear mapping  . The problem of sparse representation in H  can be described as (Wright 

et al.,2009)  

 ,=)(||||minargˆ
0 



ytosubject  (6) 

 where )(y  is any test sample in the high dimensional feature space, which corresponds to y  

in the original feature space. Similarly, the approximate solution of Eq. (6) can be obtained 
through the following convex relaxed optimization (Candè & Tao, 2006; Candè et al., 2006; 
Donoho, 2006)  

 .=)(||||minargˆ
1 



ytosubject  (7) 

When the observations are not accurate, the constraint in Eq. (7) should be relaxed and the 
following optimization problem is obtained:  

 .||)(||||||minargˆ
21 



ytosubject  (8) 

 The above equation can be transformed to the kernel form:  

 ,||=||||)(||||||minargˆ
221 



 XXY

TT KKytosubject  (9) 

 where )(= yK T

XY   and T

XK =  are the kernel matrixes. 

 
3  Experimental Results and Analysis 

This study takes companies listed on the Taiwan Stock Exchanges (TSE) as the samples for 
analysis. This investigation used publicly disclosed financial information of companies as the 
model input. Stocks of companies that are bankrupt or de-listed and labeled as full delivery 
securities on the TSE were selected as the samples in this study. These samples were matched 
with normal companies for comparison. The sample data covers the period from 1999 to 2010. 
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On behalf of sample matching, each company experiencing financial failure should be matched 
against two normal companies in the same year, same industry and running similar business 
items. Restated, the comparison companies should produce the same products as the failed 
companies and have similar scale of operations. Generally, the comparison company had similar 
total assets or the scale of operation income is close to the failed company. As a result, 57 failed 
firms and 114 non-failed firms were selected in the period between 2005-2010. This study traced 
data over 5 years, counted backwards from the day a company fell into financial distress for 5 
years. The financial reports of the comparison companies are matched (pooled together) with 
those of the failed companies in the same year. The variables used in this research are selected 
from the TEJ (Taiwan Economic Journal) financial database, which contains the following eight 
catalogues of financial indexes: corporate governance, macroeconomic condition, auditor 
opinion, and auditor quality. Totally, 18 indexes comprise 111 variables. 
 

This study tested traditional and kernel classifiers for bankruptcy predictions, including a 
decision tree (J48), nearest neighbors (KNN), logistic regressions (LR), Bayesian networks (BN), 
and SVM. The data set was randomly divided into ten parts, and ten-folds cross validation will be 
applied to evaluate the model’s performance. 
 

Table 1 shows the performance for all the classifiers. On average, their accuracies are about 70% . 
The performance of SVM, BN, and LR are similar. The accuracy of J48 is slightly better. The 
performance of KNN is the poorest. All of their performance are not satisfactory. 

 

Table  1: Performance comparison on basic prediction models (accuracy %) 
 

  1st year   2nd year   3rd year   4th year   5th year  

SVM   73.10   72.51   70.76   70.18   63.16  
BN   70.76   69.01   69.59   65.50   59.65  
LR   67.84   73.10   71.93   69.59   76.02  
J48   80.70   80.12   76.61   84.21   84.21  

KNN   64.91   63.74   60.82   59.06   53.80  
 
The performance of the new system is shown in Table 2. Average performance of all models is 
shown in Table 3. Figure 1 is the performance comparison. Our new system, KSRC on KOPLS 
space, significantly outperforms traditional classifiers. KSRC can enhance out-of-sample model 
generalization and preventing the problem of overfitting. 
 
These results demonstrate that in financial big data mining, the data is not from a linear 
subspace. Hence, linear algorithms fail to extract key discriminative information for 
classification. It is more effective to consider nonlinear subspace learning (such as KOPLS) and 
sparse representation based classifier. The basis vectors found by KOPLS are optimal candidates 
to serve as the dictionary of the KSRC to improve classification performance. 

 
Table 2: Performance of the proposed system (accuracy %) 

 
  1st year   2nd year   3rd year   4th year   5th year  

The system   97.06   94.12   94.12   91.67   88.24  
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Table 3: Average performance (accuracy %) 
 

  Average  
SVM   69.94  
BN   66.90  
LR   71.70  
J48   81.17  

KNN   60.47  
The system 93.04 

 
Figure 1: Performance comparision of all models 

4  Conclusions 

In financial big data analysis, bankruptcy prediction is important for banks or investors to 
control risk in their investments. Traditional classifiers usually perform poorly when they 
encounter the high-dimensional and nonlinear-distributed financial input data. This study 
addresses this problem by constructing a KSRC on subspaces of KOPLS for high-dimensional 
data mining. KOPLS extracted representative subspaces that optimally discriminate the output 
labels, significantly reduce the computational loading of KSRC and simultaneously enhance their 
performance. Empirical results will indicate that, compared to other classifiers, the proposed 
system performs best and robustly. The proposed method can help financial institutions 
accurately assess their investment risk and substantially reduce losses. 
 
Future research may include more financial information, such as non-financial and 
macroeconomic variables. However, high-dimensional data mining remains a great challenge. 
More effective subspace learning algorithms require further study. 
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