PREDICTIVE MODEL OF TOTAL INCOME FROM SALARIES/WAGES IN THE CONTEXT OF PASAY CITY

Wilson Cordova wilson.cordova@cksc.edu.ph Chiang Kai Shek College, Philippines

Abstract

There are varied sources of income (e.g. entrepreneurial, salary/wages, agricultural, aquatic, manufacturing, etc.). Based from the CBMS data of Pasay City, about 30% are engaged or dependent on salaries/wages compared to other income generating activities.

The objective of this study was to establish a predictive model of total income from salaries/wages based on some indicators. The basis of selection of the predictors was derived from prior knowledge of the proponent since most of the studies available were focused on demographic relations to income.

Keywords: Entrepreneurship, Salary and Wages.

Hypotheses

- 1. There is a significant relationship between the total income from salaries/wages and predictors such as:
 - a. Average water consumption;
 - b. Electric bill:
 - c. Type of house;
 - d. Tenure status of house/lot;
 - e. Type of toilet facility;
 - f. Type of water facility:
 - g. Construction materials used in roof; and
 - h. Construction materials used in walls;
- 2. There is no significant relationship that could be established between the total income from salaries/wages and the above-mentioned predictors.

Method

The data used in this study were obtained from the Community-Based Monitoring System (CBMS) database. The Community-Based Monitoring System is one of the tools developed in the early 1990s under the Micro Impacts of Macroeconomic Adjustment Policies (MIMAP) Project -Philippines to provide policymakers and program implementers with a good information base for tracking the impacts of macroeconomic reforms and various policy shocks.

The CBMS work in the Philippines evolved after it was observed that there were no disaggregated data in place for planning, program formulation, policy impact, and poverty monitoring. There was also a need for support mechanisms for the implementation of the decentralization policy. The CBMS is envisioned to serve as a tool for local governance and

complement the national poverty monitoring system. The CBMS can likewise facilitate the implementation of targeted poverty reduction programs with its household and individual level data, as well as the monitoring and evaluation of these poverty reduction programs.

Today, the CBMS has been adopted by the National Anti-Poverty Commission (NAPC) and the Department of Interior and Local Government (DILG) as the local poverty monitoring system and as a tool for localizing the Millennium Development Goals (MDGs) in the country. Efforts are underway with the help of national government agencies, local government units (LGUs), non-government organizations (NGOs) and donor agencies to scale up the implementation of the CBMS ("CBMS Philippines," 2012, par. 3-5).

For this study, the CBMS data for 2011 of the City of Pasay were used. The City of Pasay is one of the cities and municipalities that make up Metro Manila in the Philippines.

Pasay City covers a total land area of 18.50 square kilometers making it the third smallest political subdivision in the National Capital Region. It borders City of Manila to the north, Parañaque to the south, Makati and Taguig to the northeast, and Manila Bay to the west. The city can be divided in 3 distinct areas: the city's urban area with an area of 5.505 square kilometers; the Civil Aeronautics Administration (CAA) complex, which includes the Ninoy Aquino International Airport (NAIA) and the Villamor Airbase, with an area of 9.5 square kilometers; and the reclaimed land from Manila Bay with an area of 4.00 square kilometers.

Pasay is composed of seven (7) districts, subdivided into twenty (20) zones, with a total of 201 barangays. The barangays do not have names but are only designated with sequential numbers. The largest zone with an area of 5.10 square kilometers is Zone 19, which covers barangays 178 and 191. The smallest zone with an area of 10 hectares is Zone 1, covering Barangays 1 to 3 and 14 to 17 ("Pasay," 2012, "Geography," para. 1-3).

The CBMS data were conducted among the residents of the city. For this study, only data of the respondents who successfully answered the chosen variables were used. Thus, the number of respondents was reduced to 67,622.

The variables used in this study include the following:

Variable Name	Variable Label
<u>Dependent</u> wagcsh	Total income from salaries/wages
Predictors ave_water	Average water consumption
elec_bill	Electric bill
house_type1 • _Ihouse_ty~2 • _Ihouse_ty~3	Type of house (Dummy variable) (Dummy variable)
tenur1 • _Itenur1_2 • _Itenur1_3	Tenure status of house/lot (Dummy variable) (Dummy variable)

toil1	Type of toilet facility (Dummy variable) (Dummy variable)
water1 • _Iwater1_2 • _Iwater1_3	Type of water facility (Dummy variable) (Dummy variable)
roof1	Construction materials used in roof (Dummy variable) (Dummy variable)
wall1	Construction materials used in walls (Dummy variable) (Dummy variable)

Categorical predictors were grouped and recoded as follows:

Typed of Water Facility (Grouped)	Freq.	Percent	Cum.
Piped Water Bottled/Mineral Water Others	29,155 37,345 1,122	43.11 55.23 1.66	43.11 98.34 100.00
Total	67,622	100.00	

Construction Materials of Walls (Grouped)	Freq.	Percent	Cum.
Strong materials Light/Salvaged materials Mixed materials	46,017 6,035 15,570	68.05 8.92 23.03	68.05 76.97 100.00
Total	67,622	100.00	

Construction Materials of Roof (Grouped)	Freq.	Percent	Cum.
Strong materials Light/Salvaged materials Mixed materials	45,345 5,663 16,614	67.06 8.37 24.57	67.06 75.43 100.00
Total	67,622	100.00	

Type of Toilet Facility (Grouped)	Freq.	Percent	Cum.
Water sealed flush- owned Water sealed flush- shared Others	44,895 20,410 2,317	66.39 30.18 3.43	66.39 96.57 100.00
Total	67,622	100.00	

House Type (Grouped)	Freq.	Percent	Cum.
Single/Duplex Apartment/Condominium Others	48,928 15,724 2,970	72.36 23.25 4.39	72.36 95.61 100.00
Total	67,622	100.00	

Tenure Status of House/Lot (Grouped)	Freq.	Percent	Cum.
Owned	16,900	24.99	24.99
Rent	27,087	40.06	65.05
Others	23,635	34.95	100.00
Total	67,622	100.00	

Alongside, dummy variables were introduced on these categorical predictors. Each of the first categories among these predictors was naturally omitted. The omitted category becomes the reference category against which the effects of the other categories are assessed. Then, results can be interpreted as the difference between each category and this omitted category.

In the data analysis, the study used multivariate approach particularly multiple linear regression analysis. It is a method for measuring effect of predictors to explain the variation in the dependent variable. A multiple linear regression model has been estimated to determine the best linear combination for predicting the total income from salaries/wages. The data analysis was carried out using Stata. Stata is a general-purpose statistical software package created in 1985 by StataCorp. It is used by many businesses and academic institutions around the world. Most of its users work in research, especially in the fields of economics, sociology, political science, biomedicine, and epidemiology. Stata's capabilities include data management, statistical analysis, graphics, simulations, and custom programming ("Stata," 2012, "Definition," par.1).

Results and discussion

Based on the output of the regression analysis, one can assess if the overall model is significant. With the p-value of the F-test equal to zero (up to four decimal places), it can be thought that the model is statistically significant. The R-squared is 0.0981, meaning that approximately 9.81% of the variability of the dependent variable, *wagesh* is accounted for by the variables in the model. In this case, the adjusted R-squared indicates that about 9.79% of the variability of *wagesh* is accounted for by the model; even after taking into account the number of predictor variables in the model. Compared to the regression model without dummies, the R-squared is higher by 0.3 percentage points.

Sourc	e	SS	df	MS	Num	iber of	obs =	6762	22	
	+					F(14,	67607)	= 5	25.03	
				14 1.16			ob > F	=	0.0000	1
Residu	ıal	1.4996	e+15	67607 2	2182e+1		R-squa			_
	+					Adj R	-square	d =	0.0979	
Total	1	.6627e-	+15 67	7621 2.4	588e+10	R	Root MS	E	= 1.5e-	+05

The coefficients for each of the variables indicate the amount of change one could expect in the dependent variable **wagesh** given a one-unit change in the value of that variable, assuming that all other variables in the model are held constant. Taking for example the predictor **ave_water**, assuming that all other variables in the model are held constant, there would be an increase by 45.17 in the total income from salaries/wages for every one unit increase in this variable. Likewise for the variable **elec_bill**, for every one unit in this variable, there will be an increase of 24.71 in the total income from salaries/wages.

To compare the strength of one coefficient obtained from the output of regression analysis to the coefficient for another variable, the results included the computed beta coefficients which will give the standardized regression coefficients. The beta coefficients are used by some researchers to compare the relative strength of the various predictors within the model. Because the beta coefficients are all measured in standard deviations, instead of the units of the variables, they can be compared to one another. In other words, the beta coefficients are the coefficients that one could obtain if the outcome and predictor variables were all transformed in standard scores, also called z-scores, before running the regression. Because the coefficients in the Beta column are all in the same standardized units, one can compare these coefficients to assess the relative strength of each of the predictors. The predictor <code>elec_bill</code> showed the largest beta coefficient which is 0.1633. This means that a one standard deviation increase in <code>elec_bill</code> would yield a 0.1633 increase in the predicted <code>wagcsh</code>. Likewise for the predictor <code>ave_water</code>, one standard deviation increase in this variable would produce a 0.0895 increase in the predicted <code>wagcsh</code> assuming all the other variables to be held constant.

wagcsh	Coef. Std. Err.	t	P> t	Beta	
ave_water	45.17007 2.087	749	21.64 0.000	.1	.0895356
elec_bill	24.71173 .653338	4	37.82 0.000		632717

The Beta values for the **house_type1** dummy variable indicated that respondents with a house type of **_Ihouse_ty~2** (Apartment/Condominium), have incomes that were about 0.04 more than respondents with a house type of **Single/Duplex** (reference category). On the other hand, **_Ihouse_ty~3** (Commercial/Industrial/Agricultural building, etc.) have incomes that were about 0.02 less than respondents with a house type of **Single/Duplex**. For the **roof1** dummy variables showed that respondents with **light/salvaged materials used for the construction of roof** (**_Iroof1_3**) earned incomes that were about 0.009 less than respondents with **strong materials used for the construction of roof** (reference category). The T-test results revealed that the difference between these dummy variables from our reference category were insignificant.

wagcsh Coef. Std. Err. t P> t	Beta
_Ihouse_ty~2 14397.2 1392.818 10.34 <mark>0.000</mark> _Ihouse_ty~3 -14816.84 3244.952 -4.57 0.00	
_Iroof1_2 -5128.36	0090595 0088415

Taking all the results into account, the predictive model for the dependent variable *wagesh* (Total income from salaries/wages) expressing in terms of the predictors would be:

```
\label{eq:wagesh} \begin{tabular}{ll} wagesh = $4,244.76 + 0.0895 (ave\_water) + 0.1633 (elec\_bill) + 0.0388 (\_lhouse\_ty \sim 2) \\ - 0.0194 (\_lhouse\_ty \sim 3) + 0.0421 (\_ltenur1\_2) - 0.0228 (\_ltenur1\_3) - 0.0796 (\_ltoil1\_2) - 0.0222 (\_ltoil1\_3) + 0.0832 (\_lwater1\_2) - 0.0005 (\_lwater1\_3) - 0.0091 (\_lroof1\_2) - 0.0088 (\_lroof1\_3) - 0.0238 (\_lwall1\_2) - 0.0295 (\_lwall1\_3). \\ \end{tabular}
```

Conclusion

The study has presented a predictive model regarding total income from salaries/wages, taking into account some of the social indicators. The results of the study found out that average water consumption, electric bill, type of house, tenure status of house/lot, type of toilet facility, type of water facility, construction materials used in roof, and construction materials used in walls were statistically significant.

References

- [1] CBMS Philippines. Retrieved December 8, 2012, from http://cbmsphilippines.webs.com/
- [2] Pasay. (n.d.). In Wikipedia. Retrieved December 8, 2012, from http://en.wikipedia.org/wiki/Pasay
- [3] Stata. (n.d.). In Wikipedia. Retrieved December 8, 2012, from http://en.wikipedia.org/wiki/Stata
- [4] Regression with Stata. UCLA: Statistical Consulting Group. From http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter1/statareg1/ (accessed December 8, 2012).
- [5] Anderson, R. E., Black, W. C., Hair, J. F. Jr., Tatham, R. L. (1998). *Multivariate data analysis* (5th ed.). Upper Saddle, New Jersey: Prentice Hall.

Appendixes

Table 1: Summary of Data

variable name	storage type	display format	value label	variable label
ave_water	double	%10.0g		Average Water Consumption
elec_bill	double	%10.0g		Electric Bill
house_type1	float	%21.0g	house_type:	
• •		_		House Type (Grouped)
tenur1	float	%9.0g	tenur1	Tenure Status of House/Lot (Grouped)
toil1	float	%26.Ŏg	toil1	Type of Toilet Facility (Grouped)
water1	float	%21.0g	water1	Typed of Water Facility (Grouped)
roof1		%24.0a	roof1	Construction Materials of Roof (Grouped)
wall1		%24 .0g	wall1	Construction Materials of Walls (Grouped)
wagcsh		%10.0g		Total income from salaries/wages (cash)

Table 2: Summary Statistics of Data

Variable	Obs	Mean	Std. Dev.	Min	Мах
ave_water	67622	363.1653	310.8211	0	1900
elec_bill house_type1	67622 67622	1033.623 1.320369	1036.032 .5527915	0 1	6000 3
tenur1 toil1	67622 67622	2.099598 1.370353	.7678047 .5492942	1 1	3 3
water1	67622	1.585446	.52525	1	3
roof1	67622	1.575123	.8577563	1	3
wall1	67622	1.549747	.8414492	1	3
wagcsh	67622	132364.2	156807	0	1182000

Table 3: Regression Results without Dummy Variables

Source	SS	df		MS		Number of obs F(8. 67613)	=	67622 844.09
Model Residual	1.5098e+14 1.5117e+15	8 67613		73e+13 58e+10		Prob > F R-squared Adj R-squared	=	0.0000 0.0908 0.0907
Total	1.6627e+15	67621	2.45	88e+10		Root MSE	=	1.5e+05
wagcsh	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
ave_water elec_bill house_type1 tenur1 toill water1 roof1 wall1cons	44.43169 24.76442 7806.657 -6027.509 -25055.01 22912.43 -2185.286 -6906.706 105132.3	2.092 .6507 1066. 783.6 1155. 1112. 998.5 1026	863 535 311 936 981 327	21.23 38.05 7.32 -7.69 -21.68 20.59 -2.19 -6.73 32.07	0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000	40.33057 23.48888 5716.25 -7563.425 -27320.65 20730.99 -4142.409 -8917.801 98707.27	2 9 -4 -2 2 -2	8.53282 6.03996 897.063 491.592 2789.38 5093.87 28.1633 4895.61 11557.3

Table 4: Regression Results with Dummy Variables

i.house_type1 i.tenur1 i.toil1 i.water1 i.roof1 i.wall1	_Ihouse_ _Itenur1 _Itoi11_ _Iwater1 _Iroof1_ _Iwal11_	_1-3 1-3 _1-3 1-3	(natura (natura (natura (natura		lly coded; _Ihouse_typ_1 omitted lly coded; _Itenur1_1 omitted) lly coded; _Itoil1_1 omitted) lly coded; _Iwater1_1 omitted) lly coded; _Iroof1_1 omitted) lly coded; _Iwall1_1 omitted)		
Source	SS	df	MS	_		Number of obs F(14, 67607)	= 67622 = 525.03
Model Residual	1.6305e+14 1.4996e+15		1.1646e+ 2.2182e+			Prob > F R-squared Adj R-squared	= 0.0000 = 0.0981
Total	1.6627e+15	67621	2.4588e+	10		Root MSE	= 1.5e+05
wagcsh	Coef.	Std. E	rr.	t	P> t	[95% Conf.	Interval]
ave_water	45.17007	2.0877		. 64	0.000	41.07808	49.26205
_ elec_bill	24.71173	.65333		. 82	0.000	23.43119	25.99227
_Ihouse_ty~2	14397.2	1392.8		. 34	0.000	11667.28	17127.12
_Ihouse_ty~3	-14816.84	3244.9		. 57	0.000	-21176.94	-8456.733
_Itenur1_2	13466.77	1530.5		. 80	0.000	10466.91	16466.63
_Itenur1_3	-7493.75	1578.5		. 75	0.000	-10587.72	-4399.776
_Itoil1_2 _Itoil1_3	-27200.31 -19132.81	1338.0			0.000	-29822.91 -26517.65	-24577.71 -11747.97
_1t0111_3 _Iwater1_2	26236.77	3767.7 1204.1		.08 .79	0.000	23876.59	28596.95
_Iwater1_3	-591.5475	4700.0		.13	0.900	-9803.585	8620.49
_Iwater1_3	-5128.36	2948		. 74	0.082	-10907.22	650.5016
_1roof1_3	-3220.48	2043.0		.58	0.002	-7224.873	783.9124
_IWall1_2	-13063.09	2866.5			0.000	-18681.6	-7444.572
_Iwall1_3	-10976.67	2106.1			0.000	-15104.73	-6848.616
_cons	84244.76	1767.		.65	0.000	80779.52	87710

Table 5: Regression Results with Dummy Variables Showing Beta Coefficients

i.house_type1 i.tenur1 i.toil1 i.water1 i.roof1 i.wall1	_Ihouse_t _Itenur1_ _Itoil1_1 _Iwater1_ _Iroof1_1 _Iwall1_1	1-3 -3 1-3 -3	(natura (natura (natura (natura	lly coded lly coded lly coded lly coded	; _Ihouse_typ_1 omitted) ; _Itenur1_1 omitted) ; _Itoil1_1 omitted) ; _Iwater1_1 omitted) ; _Iroof1_1 omitted) ; _Iwall1_1 omitted)
Source	SS	df	MS		Number of obs = 67622 F(14, 67607) = 525.03
Model Residual	1.6305e+14 1.4996e+15		1.1646e+13 2.2182e+10		Prob > F = 0.0000 R-squared = 0.0981 Adj R-squared = 0.0979
Total	1.6627e+15	67621	2.4588e+10		Root MSE = 1.5e+05
wagcsh	Coef.	Std. E	rr. t	P> t	Beta
ave_water elec_bill _Ihouse_ty~2 _Ihouse_ty~3 _Itenurl_2 _Itenurl_3 _Itoill_2 _Itoill_3 _Iwaterl_2 _Iwaterl_3 _Iroofl_2 _Iroofl_3 _Iwalll_2 _Iwalll_3 _Cons	45.17007 24.71173 14397.2 -14816.84 13466.77 -7493.75 -27200.31 -19132.81 26236.77 -591.5475 -5128.36 -3220.48 -13063.09 -10976.67 84244.76	2.0877 .65333 1392.8 3244.9 1530.5 1578.5 1338.0 3767.7 1204.1 4700.0 2948 2043.0 2866.5 2106.5	37.82 184 37.82 152 -4.57 1541 8.80 1559 -4.75 163 -20.33 177 -5.08 172 21.79 121 -0.13 134 -1.74 158 -1.58 158 -4.56 158 -5.21	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.082 0.115 0.000	.0895356 .1632717 .0387869 -0193631 .0420832 0227871 079629 0221955 .0832018 0004819 0090595 0088415 0237508 0294702